表格数据生成模型:深入调查和广泛调优的性能基准

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
G.Charbel N. Kindji , Lina M. Rojas-Barahona , Elisa Fromont , Tanguy Urvoy
{"title":"表格数据生成模型:深入调查和广泛调优的性能基准","authors":"G.Charbel N. Kindji ,&nbsp;Lina M. Rojas-Barahona ,&nbsp;Elisa Fromont ,&nbsp;Tanguy Urvoy","doi":"10.1016/j.neucom.2025.131655","DOIUrl":null,"url":null,"abstract":"<div><div>Generating realistic, safe, and useful tabular data is important for downstream tasks such as privacy preserving, imputation, oversampling, explainability, and simulation. However, the structure of tabular data, marked by heterogeneous types, non-smooth distributions, complex feature dependencies, and categorical imbalance, poses significant challenges. Although many generative approaches have been proposed, a fair and unified evaluation across datasets remains missing. This work benchmarks five recent model families on 16 diverse datasets (average 80 K rows), with careful optimization of hyperparameters, feature encodings, and architectures. We show that dataset-specific tuning leads to substantial performance gains, particularly for diffusion-based models. We further introduce constrained hyperparameter spaces that retain competitive performance while significantly reducing tuning cost, enabling efficient model selection under fixed GPU budgets. As future perspectives, we can study cross-domain and cross-table generation.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"658 ","pages":"Article 131655"},"PeriodicalIF":6.5000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tabular data generation models: An in-depth survey and performance benchmarks with extensive tuning\",\"authors\":\"G.Charbel N. Kindji ,&nbsp;Lina M. Rojas-Barahona ,&nbsp;Elisa Fromont ,&nbsp;Tanguy Urvoy\",\"doi\":\"10.1016/j.neucom.2025.131655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Generating realistic, safe, and useful tabular data is important for downstream tasks such as privacy preserving, imputation, oversampling, explainability, and simulation. However, the structure of tabular data, marked by heterogeneous types, non-smooth distributions, complex feature dependencies, and categorical imbalance, poses significant challenges. Although many generative approaches have been proposed, a fair and unified evaluation across datasets remains missing. This work benchmarks five recent model families on 16 diverse datasets (average 80 K rows), with careful optimization of hyperparameters, feature encodings, and architectures. We show that dataset-specific tuning leads to substantial performance gains, particularly for diffusion-based models. We further introduce constrained hyperparameter spaces that retain competitive performance while significantly reducing tuning cost, enabling efficient model selection under fixed GPU budgets. As future perspectives, we can study cross-domain and cross-table generation.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"658 \",\"pages\":\"Article 131655\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225023276\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225023276","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

生成真实、安全和有用的表格数据对于下游任务(如隐私保护、输入、过采样、可解释性和模拟)非常重要。然而,表格数据的结构以异构类型、非光滑分布、复杂的特征依赖和分类不平衡为特征,这给数据处理带来了巨大的挑战。尽管已经提出了许多生成方法,但仍然缺乏跨数据集的公平和统一的评估。这项工作在16个不同的数据集(平均80 K行)上对五个最新的模型族进行了基准测试,并对超参数、特征编码和架构进行了仔细的优化。我们表明,特定于数据集的调优会带来实质性的性能提升,特别是对于基于扩散的模型。我们进一步引入约束超参数空间,在保持竞争性能的同时显著降低调优成本,在固定GPU预算下实现高效的模型选择。在未来,我们可以研究跨域和跨表的生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tabular data generation models: An in-depth survey and performance benchmarks with extensive tuning
Generating realistic, safe, and useful tabular data is important for downstream tasks such as privacy preserving, imputation, oversampling, explainability, and simulation. However, the structure of tabular data, marked by heterogeneous types, non-smooth distributions, complex feature dependencies, and categorical imbalance, poses significant challenges. Although many generative approaches have been proposed, a fair and unified evaluation across datasets remains missing. This work benchmarks five recent model families on 16 diverse datasets (average 80 K rows), with careful optimization of hyperparameters, feature encodings, and architectures. We show that dataset-specific tuning leads to substantial performance gains, particularly for diffusion-based models. We further introduce constrained hyperparameter spaces that retain competitive performance while significantly reducing tuning cost, enabling efficient model selection under fixed GPU budgets. As future perspectives, we can study cross-domain and cross-table generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信