面向图级异常检测的双视角感知图神经网络

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jianliang Gao , Xinqiu Zhang , Qiutong Li , Jiamin Chen
{"title":"面向图级异常检测的双视角感知图神经网络","authors":"Jianliang Gao ,&nbsp;Xinqiu Zhang ,&nbsp;Qiutong Li ,&nbsp;Jiamin Chen","doi":"10.1016/j.neucom.2025.131649","DOIUrl":null,"url":null,"abstract":"<div><div>Graph-level anomaly detection based on graph neural networks (GAD-GNN) aims to identify graphs exhibiting anomalous characteristics distinct from the majority in a dataset. However, existing GAD-GNN methods face two critical challenges: Aggregation anomaly dilution occurs when the signals of sparsely distributed abnormal nodes are overwhelmed by the dominant influence of normal nodes during message passing. Readout anomaly dilution arises when locally concentrated anomalies are smoothed out in graph readout. To overcome these challenges, we propose the <strong>D</strong>ual <strong>P</strong>erspective-Aware <strong>G</strong>raph <strong>N</strong>eural <strong>N</strong>etwork (DPGNN), which integrates two complementary modules. The Global Awareness Module enhances node representations with multi-scale return-probability fingerprints, ensuring that signals of sparsely distributed abnormal nodes are preserved against overwhelming normal patterns. The Local Awareness Module adaptively identifies anomaly subgraphs using structural cues and employs attention-based readout to retain concentrated anomalies from being diluted in graph readout. Extensive experiments on multiple benchmark datasets demonstrate that DPGNN consistently outperforms state-of-the-art methods, validating its effectiveness in detecting graph-level anomalies.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"658 ","pages":"Article 131649"},"PeriodicalIF":6.5000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual perspective-aware graph neural network for graph-level anomaly detection\",\"authors\":\"Jianliang Gao ,&nbsp;Xinqiu Zhang ,&nbsp;Qiutong Li ,&nbsp;Jiamin Chen\",\"doi\":\"10.1016/j.neucom.2025.131649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Graph-level anomaly detection based on graph neural networks (GAD-GNN) aims to identify graphs exhibiting anomalous characteristics distinct from the majority in a dataset. However, existing GAD-GNN methods face two critical challenges: Aggregation anomaly dilution occurs when the signals of sparsely distributed abnormal nodes are overwhelmed by the dominant influence of normal nodes during message passing. Readout anomaly dilution arises when locally concentrated anomalies are smoothed out in graph readout. To overcome these challenges, we propose the <strong>D</strong>ual <strong>P</strong>erspective-Aware <strong>G</strong>raph <strong>N</strong>eural <strong>N</strong>etwork (DPGNN), which integrates two complementary modules. The Global Awareness Module enhances node representations with multi-scale return-probability fingerprints, ensuring that signals of sparsely distributed abnormal nodes are preserved against overwhelming normal patterns. The Local Awareness Module adaptively identifies anomaly subgraphs using structural cues and employs attention-based readout to retain concentrated anomalies from being diluted in graph readout. Extensive experiments on multiple benchmark datasets demonstrate that DPGNN consistently outperforms state-of-the-art methods, validating its effectiveness in detecting graph-level anomalies.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"658 \",\"pages\":\"Article 131649\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225023215\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225023215","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

基于图神经网络(GAD-GNN)的图级异常检测旨在识别数据集中表现出不同于大多数异常特征的图。然而,现有的GAD-GNN方法面临两个关键挑战:当稀疏分布的异常节点的信号在消息传递过程中被正常节点的主导影响所淹没时,会发生聚集异常稀释。当局部集中的异常在图形读出中被平滑时,读出异常会被稀释。为了克服这些挑战,我们提出了双视角感知图神经网络(DPGNN),它集成了两个互补的模块。全局感知模块通过多尺度返回概率指纹增强节点表示,确保稀疏分布的异常节点的信号在压倒性的正常模式下得到保存。局部感知模块使用结构线索自适应识别异常子图,并采用基于注意力的读出来保留集中的异常,以免在图形读出中被稀释。在多个基准数据集上进行的大量实验表明,DPGNN始终优于最先进的方法,验证了其在检测图级异常方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual perspective-aware graph neural network for graph-level anomaly detection
Graph-level anomaly detection based on graph neural networks (GAD-GNN) aims to identify graphs exhibiting anomalous characteristics distinct from the majority in a dataset. However, existing GAD-GNN methods face two critical challenges: Aggregation anomaly dilution occurs when the signals of sparsely distributed abnormal nodes are overwhelmed by the dominant influence of normal nodes during message passing. Readout anomaly dilution arises when locally concentrated anomalies are smoothed out in graph readout. To overcome these challenges, we propose the Dual Perspective-Aware Graph Neural Network (DPGNN), which integrates two complementary modules. The Global Awareness Module enhances node representations with multi-scale return-probability fingerprints, ensuring that signals of sparsely distributed abnormal nodes are preserved against overwhelming normal patterns. The Local Awareness Module adaptively identifies anomaly subgraphs using structural cues and employs attention-based readout to retain concentrated anomalies from being diluted in graph readout. Extensive experiments on multiple benchmark datasets demonstrate that DPGNN consistently outperforms state-of-the-art methods, validating its effectiveness in detecting graph-level anomalies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信