多视图聚类的自加权图张量和秩约束二部图融合

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jie Zhang , Xiaoqian Zhang , Jinghao Li , Yongyi Yang , Zhenwen Ren , Rong Tang , Dong Wang
{"title":"多视图聚类的自加权图张量和秩约束二部图融合","authors":"Jie Zhang ,&nbsp;Xiaoqian Zhang ,&nbsp;Jinghao Li ,&nbsp;Yongyi Yang ,&nbsp;Zhenwen Ren ,&nbsp;Rong Tang ,&nbsp;Dong Wang","doi":"10.1016/j.neucom.2025.131575","DOIUrl":null,"url":null,"abstract":"<div><div>Tensor multi-view clustering generally outperforms non-tensor counterparts, as the tensor structure can effectively capture the higher-order correlations of data. Although the t-SVD-based tensor nuclear norm has shown remarkable performance, it treats the similar information across all views equally, overlooking the higher-order similarities between similar graphs. To address this issue, we propose a Pearson Correlation Coefficient-based <span><math><mtext>A</mtext></math></span>uto-weighted <span><math><mtext>G</mtext></math></span>raph <span><math><mtext>T</mtext></math></span>ensor and <span><math><mtext>R</mtext></math></span>ank-constrained <span><math><mtext>B</mtext></math></span>ipartite <span><math><mtext>G</mtext></math></span>raph <span><math><mtext>F</mtext></math></span>usion (AGTRBGF) approach for multi-view clustering. Specifically, the P-AGT learning method breaks free from the constraints of predefined weights, automatically assigning optimal weight values for each similarity graph by leveraging the higher-order similarities among the similar graphs of different views. Additionally, the Laplace rank is utilized to constrain the adaptive graph fusion, endowing learned consensus graph with strong diagonal structure and enhancing the model’s robustness. Experiments conducted on distinct datasets validate the effectiveness and superior clustering performance of AGTRBGF.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"658 ","pages":"Article 131575"},"PeriodicalIF":6.5000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Auto-weighted graph tensor and rank-constrained bipartite graph fusion for multi-view clustering\",\"authors\":\"Jie Zhang ,&nbsp;Xiaoqian Zhang ,&nbsp;Jinghao Li ,&nbsp;Yongyi Yang ,&nbsp;Zhenwen Ren ,&nbsp;Rong Tang ,&nbsp;Dong Wang\",\"doi\":\"10.1016/j.neucom.2025.131575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tensor multi-view clustering generally outperforms non-tensor counterparts, as the tensor structure can effectively capture the higher-order correlations of data. Although the t-SVD-based tensor nuclear norm has shown remarkable performance, it treats the similar information across all views equally, overlooking the higher-order similarities between similar graphs. To address this issue, we propose a Pearson Correlation Coefficient-based <span><math><mtext>A</mtext></math></span>uto-weighted <span><math><mtext>G</mtext></math></span>raph <span><math><mtext>T</mtext></math></span>ensor and <span><math><mtext>R</mtext></math></span>ank-constrained <span><math><mtext>B</mtext></math></span>ipartite <span><math><mtext>G</mtext></math></span>raph <span><math><mtext>F</mtext></math></span>usion (AGTRBGF) approach for multi-view clustering. Specifically, the P-AGT learning method breaks free from the constraints of predefined weights, automatically assigning optimal weight values for each similarity graph by leveraging the higher-order similarities among the similar graphs of different views. Additionally, the Laplace rank is utilized to constrain the adaptive graph fusion, endowing learned consensus graph with strong diagonal structure and enhancing the model’s robustness. Experiments conducted on distinct datasets validate the effectiveness and superior clustering performance of AGTRBGF.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"658 \",\"pages\":\"Article 131575\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225022477\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225022477","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

张量多视图聚类通常优于非张量聚类,因为张量结构可以有效地捕获数据的高阶相关性。尽管基于t- svd的张量核范数表现出了显著的性能,但它平等地对待所有视图中的相似信息,忽略了相似图之间的高阶相似性。为了解决这个问题,我们提出了一种基于Pearson相关系数的自动加权图张量和秩约束二部图融合(AGTRBGF)的多视图聚类方法。具体而言,P-AGT学习方法摆脱了预定义权重的约束,利用不同视图的相似图之间的高阶相似度,自动为每个相似图分配最优权重值。此外,利用拉普拉斯秩约束自适应图融合,使学习到的一致图具有较强的对角结构,增强了模型的鲁棒性。在不同数据集上的实验验证了AGTRBGF的有效性和优异的聚类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Auto-weighted graph tensor and rank-constrained bipartite graph fusion for multi-view clustering
Tensor multi-view clustering generally outperforms non-tensor counterparts, as the tensor structure can effectively capture the higher-order correlations of data. Although the t-SVD-based tensor nuclear norm has shown remarkable performance, it treats the similar information across all views equally, overlooking the higher-order similarities between similar graphs. To address this issue, we propose a Pearson Correlation Coefficient-based Auto-weighted Graph Tensor and Rank-constrained Bipartite Graph Fusion (AGTRBGF) approach for multi-view clustering. Specifically, the P-AGT learning method breaks free from the constraints of predefined weights, automatically assigning optimal weight values for each similarity graph by leveraging the higher-order similarities among the similar graphs of different views. Additionally, the Laplace rank is utilized to constrain the adaptive graph fusion, endowing learned consensus graph with strong diagonal structure and enhancing the model’s robustness. Experiments conducted on distinct datasets validate the effectiveness and superior clustering performance of AGTRBGF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信