分子俘获石墨烯应变电子学

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Pawan Kumar Srivastava, , , Vedanki Khandelwal, , , Indukuru Ramesh Reddy, , , Kartick Tarafder, , and , Subhasis Ghosh*, 
{"title":"分子俘获石墨烯应变电子学","authors":"Pawan Kumar Srivastava,&nbsp;, ,&nbsp;Vedanki Khandelwal,&nbsp;, ,&nbsp;Indukuru Ramesh Reddy,&nbsp;, ,&nbsp;Kartick Tarafder,&nbsp;, and ,&nbsp;Subhasis Ghosh*,&nbsp;","doi":"10.1021/acs.jpcc.5c04013","DOIUrl":null,"url":null,"abstract":"<p >Here, we report on controlling strain in graphene by trapping molecules at the graphene–substrate interface and leveraging molecular dipole moments. Spectroscopic and transport measurements reveal that strain correlates with the dipole moments of trapped molecules extending beyond their molecular sizes, where values ranging from 1.5 to 4.9D lead to a 50-fold increase in strain and a significant rise in residual carrier density. This has been possible by charge transfer between graphene and trapped molecules, altering the C═C bond length and causing biaxial strain. First-principles density functional theory calculations confirm a consistent dependence of the bending height on molecular dipole moments.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 41","pages":"18530–18536"},"PeriodicalIF":3.2000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphene Straintronics by Molecular Trapping\",\"authors\":\"Pawan Kumar Srivastava,&nbsp;, ,&nbsp;Vedanki Khandelwal,&nbsp;, ,&nbsp;Indukuru Ramesh Reddy,&nbsp;, ,&nbsp;Kartick Tarafder,&nbsp;, and ,&nbsp;Subhasis Ghosh*,&nbsp;\",\"doi\":\"10.1021/acs.jpcc.5c04013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Here, we report on controlling strain in graphene by trapping molecules at the graphene–substrate interface and leveraging molecular dipole moments. Spectroscopic and transport measurements reveal that strain correlates with the dipole moments of trapped molecules extending beyond their molecular sizes, where values ranging from 1.5 to 4.9D lead to a 50-fold increase in strain and a significant rise in residual carrier density. This has been possible by charge transfer between graphene and trapped molecules, altering the C═C bond length and causing biaxial strain. First-principles density functional theory calculations confirm a consistent dependence of the bending height on molecular dipole moments.</p>\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"129 41\",\"pages\":\"18530–18536\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c04013\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c04013","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在这里,我们报告了通过在石墨烯-衬底界面捕获分子并利用分子偶极矩来控制石墨烯中的应变。光谱和输运测量表明,应变与捕获分子的偶极矩相关,其值范围从1.5到4.9D导致应变增加50倍,残余载流子密度显著增加。这可以通过石墨烯和捕获分子之间的电荷转移,改变C = C键的长度并引起双轴应变来实现。第一性原理密度泛函理论计算证实了弯曲高度对分子偶极矩的一致依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Graphene Straintronics by Molecular Trapping

Graphene Straintronics by Molecular Trapping

Graphene Straintronics by Molecular Trapping

Here, we report on controlling strain in graphene by trapping molecules at the graphene–substrate interface and leveraging molecular dipole moments. Spectroscopic and transport measurements reveal that strain correlates with the dipole moments of trapped molecules extending beyond their molecular sizes, where values ranging from 1.5 to 4.9D lead to a 50-fold increase in strain and a significant rise in residual carrier density. This has been possible by charge transfer between graphene and trapped molecules, altering the C═C bond length and causing biaxial strain. First-principles density functional theory calculations confirm a consistent dependence of the bending height on molecular dipole moments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信