{"title":"小行星质量PBHDM是否与PTA的催化相变解释相容?","authors":"Jiahang Zhong, Chao Chen and Yi-Fu Cai","doi":"10.1088/1475-7516/2025/10/033","DOIUrl":null,"url":null,"abstract":"Primordial black holes (PBHs) can catalyze first-order phase transitions (FOPTs) in their vicinity, potentially modifying the gravitational wave (GW) signals from PTs. In this study, we investigate the GWs from strong PTs catalyzed by PBHs. We consider high PBH number densities, corresponding to asteroid-mass PBH dark matter (DM) when the GWs from FOPTs peak in the nanohertz band. We calculate the PBH-catalyzed FOPT GWs from both bubble collision GWs and scalar-induced gravitational waves (SIGWs). We find that while low PBH number densities amplify the GW signals due to the formation of large bubbles, high PBH number densities suppress them, as the accelerated phase transition proceeds too rapidly. This suppression renders the signals unable to explain pulsar timing array (PTA) observations. By conducting data fitting with the NANOGrav 15-year dataset, we find that the PBH catalytic effect significantly alters the estimation of PT parameters. Notably, our analysis of the bubble collision GWs reveals that, the asteroid-mass PBHs (10-16-10-12M⊙) constituting all DM is incompatible with the PT interpretation of PTA signals. However, incorporating SIGWs alleviates this incompatibility for PBHs in the mass range 10-14-10-12M⊙.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"28 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can asteroid-mass PBHDM be compatible with catalyzed phase transition interpretation of PTA?\",\"authors\":\"Jiahang Zhong, Chao Chen and Yi-Fu Cai\",\"doi\":\"10.1088/1475-7516/2025/10/033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Primordial black holes (PBHs) can catalyze first-order phase transitions (FOPTs) in their vicinity, potentially modifying the gravitational wave (GW) signals from PTs. In this study, we investigate the GWs from strong PTs catalyzed by PBHs. We consider high PBH number densities, corresponding to asteroid-mass PBH dark matter (DM) when the GWs from FOPTs peak in the nanohertz band. We calculate the PBH-catalyzed FOPT GWs from both bubble collision GWs and scalar-induced gravitational waves (SIGWs). We find that while low PBH number densities amplify the GW signals due to the formation of large bubbles, high PBH number densities suppress them, as the accelerated phase transition proceeds too rapidly. This suppression renders the signals unable to explain pulsar timing array (PTA) observations. By conducting data fitting with the NANOGrav 15-year dataset, we find that the PBH catalytic effect significantly alters the estimation of PT parameters. Notably, our analysis of the bubble collision GWs reveals that, the asteroid-mass PBHs (10-16-10-12M⊙) constituting all DM is incompatible with the PT interpretation of PTA signals. However, incorporating SIGWs alleviates this incompatibility for PBHs in the mass range 10-14-10-12M⊙.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/10/033\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/10/033","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Can asteroid-mass PBHDM be compatible with catalyzed phase transition interpretation of PTA?
Primordial black holes (PBHs) can catalyze first-order phase transitions (FOPTs) in their vicinity, potentially modifying the gravitational wave (GW) signals from PTs. In this study, we investigate the GWs from strong PTs catalyzed by PBHs. We consider high PBH number densities, corresponding to asteroid-mass PBH dark matter (DM) when the GWs from FOPTs peak in the nanohertz band. We calculate the PBH-catalyzed FOPT GWs from both bubble collision GWs and scalar-induced gravitational waves (SIGWs). We find that while low PBH number densities amplify the GW signals due to the formation of large bubbles, high PBH number densities suppress them, as the accelerated phase transition proceeds too rapidly. This suppression renders the signals unable to explain pulsar timing array (PTA) observations. By conducting data fitting with the NANOGrav 15-year dataset, we find that the PBH catalytic effect significantly alters the estimation of PT parameters. Notably, our analysis of the bubble collision GWs reveals that, the asteroid-mass PBHs (10-16-10-12M⊙) constituting all DM is incompatible with the PT interpretation of PTA signals. However, incorporating SIGWs alleviates this incompatibility for PBHs in the mass range 10-14-10-12M⊙.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.