放射组学分析增强影像学明显痴呆的放射学评估。

NPJ dementia Pub Date : 2025-01-01 Epub Date: 2025-10-01 DOI:10.1038/s44400-025-00031-1
Shreyas Puducheri, Olivia T Zhou, Krish Kapadia, Michael F Romano, Siddarth Yalamanchili, Armaan Agrawal, V Carlota Andreu-Arasa, Chad W Farris, Asim Z Mian, Aaron B Paul, Saurabh Rohatgi, Bindu N Setty, Juan E Small, Vijaya B Kolachalama
{"title":"放射组学分析增强影像学明显痴呆的放射学评估。","authors":"Shreyas Puducheri, Olivia T Zhou, Krish Kapadia, Michael F Romano, Siddarth Yalamanchili, Armaan Agrawal, V Carlota Andreu-Arasa, Chad W Farris, Asim Z Mian, Aaron B Paul, Saurabh Rohatgi, Bindu N Setty, Juan E Small, Vijaya B Kolachalama","doi":"10.1038/s44400-025-00031-1","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate differential diagnosis of dementia is essential for guiding timely treatment, particularly as anti-amyloid therapies become more widely available and require precise patient characterization. Here, we developed a radiomics-based machine learning (ML) approach to enhance neuroimaging assessments in distinguishing Alzheimer's disease (AD) from other imaging-evident dementias (OIED). We retrospectively analyzed 1041 individuals from the National Alzheimer's Coordinating Center with confirmed dementia diagnoses and at least one T1 or T2/FLAIR MRI scan. Using FastSurfer and a Lesion Prediction Algorithm, we extracted volumetric and lesion features, which were then used to train ML models. Model performance was compared to the independent evaluations of seven fellowship-trained neuroradiologists. The classifier achieved an AUROC of 0.79 ± 0.01 for AD and 0.66 ± 0.03 for OIED, performing comparably to expert assessments. Interpretation using SHAP values showed strong alignment with imaging features known to align with AD or OIED, respectively. These findings highlight the potential of radiomics to augment neuroimaging workflows.</p>","PeriodicalId":520469,"journal":{"name":"NPJ dementia","volume":"1 1","pages":"27"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12488479/pdf/","citationCount":"0","resultStr":"{\"title\":\"Augmenting radiological assessment of imaging evident dementias with radiomic analysis.\",\"authors\":\"Shreyas Puducheri, Olivia T Zhou, Krish Kapadia, Michael F Romano, Siddarth Yalamanchili, Armaan Agrawal, V Carlota Andreu-Arasa, Chad W Farris, Asim Z Mian, Aaron B Paul, Saurabh Rohatgi, Bindu N Setty, Juan E Small, Vijaya B Kolachalama\",\"doi\":\"10.1038/s44400-025-00031-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate differential diagnosis of dementia is essential for guiding timely treatment, particularly as anti-amyloid therapies become more widely available and require precise patient characterization. Here, we developed a radiomics-based machine learning (ML) approach to enhance neuroimaging assessments in distinguishing Alzheimer's disease (AD) from other imaging-evident dementias (OIED). We retrospectively analyzed 1041 individuals from the National Alzheimer's Coordinating Center with confirmed dementia diagnoses and at least one T1 or T2/FLAIR MRI scan. Using FastSurfer and a Lesion Prediction Algorithm, we extracted volumetric and lesion features, which were then used to train ML models. Model performance was compared to the independent evaluations of seven fellowship-trained neuroradiologists. The classifier achieved an AUROC of 0.79 ± 0.01 for AD and 0.66 ± 0.03 for OIED, performing comparably to expert assessments. Interpretation using SHAP values showed strong alignment with imaging features known to align with AD or OIED, respectively. These findings highlight the potential of radiomics to augment neuroimaging workflows.</p>\",\"PeriodicalId\":520469,\"journal\":{\"name\":\"NPJ dementia\",\"volume\":\"1 1\",\"pages\":\"27\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12488479/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ dementia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44400-025-00031-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ dementia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44400-025-00031-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确的痴呆鉴别诊断对于指导及时治疗至关重要,特别是随着抗淀粉样蛋白疗法的广泛应用,需要精确的患者特征。在这里,我们开发了一种基于放射组学的机器学习(ML)方法来增强神经影像学评估,以区分阿尔茨海默病(AD)和其他影像学明显痴呆(OIED)。我们回顾性分析了1041名来自国家阿尔茨海默病协调中心的确诊痴呆患者,并至少进行了一次T1或T2/FLAIR MRI扫描。使用FastSurfer和病变预测算法,我们提取了体积和病变特征,然后用于训练ML模型。将模型的性能与7名接受过奖学金培训的神经放射学家的独立评估进行比较。该分类器对AD的AUROC为0.79±0.01,对OIED的AUROC为0.66±0.03,与专家评估相当。利用SHAP值进行解释显示,与已知的AD或OIED成像特征有很强的一致性。这些发现突出了放射组学在增强神经成像工作流程方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Augmenting radiological assessment of imaging evident dementias with radiomic analysis.

Accurate differential diagnosis of dementia is essential for guiding timely treatment, particularly as anti-amyloid therapies become more widely available and require precise patient characterization. Here, we developed a radiomics-based machine learning (ML) approach to enhance neuroimaging assessments in distinguishing Alzheimer's disease (AD) from other imaging-evident dementias (OIED). We retrospectively analyzed 1041 individuals from the National Alzheimer's Coordinating Center with confirmed dementia diagnoses and at least one T1 or T2/FLAIR MRI scan. Using FastSurfer and a Lesion Prediction Algorithm, we extracted volumetric and lesion features, which were then used to train ML models. Model performance was compared to the independent evaluations of seven fellowship-trained neuroradiologists. The classifier achieved an AUROC of 0.79 ± 0.01 for AD and 0.66 ± 0.03 for OIED, performing comparably to expert assessments. Interpretation using SHAP values showed strong alignment with imaging features known to align with AD or OIED, respectively. These findings highlight the potential of radiomics to augment neuroimaging workflows.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信