缺少协变量的多变量Cox模型的有效估计。

IF 0.8 3区 数学 Q2 STATISTICS & PROBABILITY
Statistica Neerlandica Pub Date : 2025-02-01 Epub Date: 2025-01-30 DOI:10.1111/stan.70000
Youngjoo Cho, Soyoung Kim, Kwang Woo Ahn
{"title":"缺少协变量的多变量Cox模型的有效估计。","authors":"Youngjoo Cho, Soyoung Kim, Kwang Woo Ahn","doi":"10.1111/stan.70000","DOIUrl":null,"url":null,"abstract":"<p><p>Missing covariates are a ubiquitous issue in the data analysis. One of the widely-used approaches for efficient parameter estimation is using augmentation based on the semiparametric efficiency theory. However, existing methods for right-censored data with Cox model did not correctly implement augmentation, which may result in inefficient parameter estimation. In this paper, we derive a correct augmentation term for the stratified proportional hazards model with missing covariates. We study the statistical properties of the estimators for known and unknown missing mechanisms. Thus, a popular study design such as the casecohort study design can be handled as a special case. Simulation studies show that our new estimators for an unknown missing mechanism and the case-cohort study design obtain estimation efficiency gains compared with inverse probability weighted estimators. We apply our method to the Atherosclerosis Risk in Communities study under the case-cohort study design.</p>","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"79 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12490781/pdf/","citationCount":"0","resultStr":"{\"title\":\"Efficient estimation for the multivariate Cox model with missing covariates.\",\"authors\":\"Youngjoo Cho, Soyoung Kim, Kwang Woo Ahn\",\"doi\":\"10.1111/stan.70000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Missing covariates are a ubiquitous issue in the data analysis. One of the widely-used approaches for efficient parameter estimation is using augmentation based on the semiparametric efficiency theory. However, existing methods for right-censored data with Cox model did not correctly implement augmentation, which may result in inefficient parameter estimation. In this paper, we derive a correct augmentation term for the stratified proportional hazards model with missing covariates. We study the statistical properties of the estimators for known and unknown missing mechanisms. Thus, a popular study design such as the casecohort study design can be handled as a special case. Simulation studies show that our new estimators for an unknown missing mechanism and the case-cohort study design obtain estimation efficiency gains compared with inverse probability weighted estimators. We apply our method to the Atherosclerosis Risk in Communities study under the case-cohort study design.</p>\",\"PeriodicalId\":51178,\"journal\":{\"name\":\"Statistica Neerlandica\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12490781/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica Neerlandica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/stan.70000\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.70000","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

协变量缺失是数据分析中普遍存在的问题。基于半参数效率理论的增广法是目前广泛应用的有效参数估计方法之一。然而,现有的Cox模型右截尾数据增强方法没有正确实现,可能导致参数估计效率低下。本文导出了缺少协变量的分层比例风险模型的一个正确增广项。研究了已知和未知缺失机制估计量的统计性质。因此,一个流行的研究设计,如病例研究设计,可以作为一个特殊的情况下处理。仿真研究表明,与逆概率加权估计器相比,我们的未知缺失机制估计器和病例队列研究设计获得了估计效率的提高。我们采用病例队列研究设计,将我们的方法应用于社区动脉粥样硬化风险研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient estimation for the multivariate Cox model with missing covariates.

Missing covariates are a ubiquitous issue in the data analysis. One of the widely-used approaches for efficient parameter estimation is using augmentation based on the semiparametric efficiency theory. However, existing methods for right-censored data with Cox model did not correctly implement augmentation, which may result in inefficient parameter estimation. In this paper, we derive a correct augmentation term for the stratified proportional hazards model with missing covariates. We study the statistical properties of the estimators for known and unknown missing mechanisms. Thus, a popular study design such as the casecohort study design can be handled as a special case. Simulation studies show that our new estimators for an unknown missing mechanism and the case-cohort study design obtain estimation efficiency gains compared with inverse probability weighted estimators. We apply our method to the Atherosclerosis Risk in Communities study under the case-cohort study design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistica Neerlandica
Statistica Neerlandica 数学-统计学与概率论
CiteScore
2.60
自引率
6.70%
发文量
26
审稿时长
>12 weeks
期刊介绍: Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信