{"title":"预测单性状进化对从气候变化的人口影响中拯救植物种群的贡献。","authors":"Diane R Campbell, John M Powers, Justin Kipness","doi":"10.1093/evlett/qraf019","DOIUrl":null,"url":null,"abstract":"<p><p>Evolutionary adaptation can allow a population to persist in the face of a new environmental challenge. With many populations now threatened by environmental change, it is important to understand whether this process of evolutionary rescue is feasible under natural conditions, yet work on this topic has been largely theoretical. We used unique long-term data to parameterize deterministic and stochastic models of the contribution of 1 trait to evolutionary rescue using field estimates for the subalpine plant <i>Ipomopsis aggregata</i> and hybrids with its close relative <i>I. tenuituba</i>. In the absence of evolution or plasticity, the 2 studied populations are projected to go locally extinct due to earlier snowmelt under climate change, which imposes drought conditions. Phenotypic selection on specific leaf area (SLA) was estimated in 12 years and multiple populations. Those data on selection and its environmental sensitivity to annual snowmelt timing in the spring were combined with previous data on heritability of the trait, phenotypic plasticity of the trait, and the impact of snowmelt timing on mean absolute fitness. Selection favored low values of SLA (thicker leaves). The evolutionary response to selection on that single trait was insufficient to allow evolutionary rescue by itself, but in combination with phenotypic plasticity it promoted evolutionary rescue in 1 of the 2 populations. The number of years until population size would stop declining and begin to rise again was heavily dependent upon stochastic environmental changes in snowmelt timing around the trend line. Our study illustrates how field estimates of quantitative genetic parameters can be used to predict the likelihood of evolutionary rescue. Although a complete set of parameter estimates are generally unavailable, it may also be possible to predict the general likelihood of evolutionary rescue based on published ranges for phenotypic selection and heritability and the extent to which early snowmelt impacts fitness.</p>","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":"9 5","pages":"533-547"},"PeriodicalIF":3.7000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12492211/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicting the contribution of single trait evolution to rescuing a plant population from demographic impacts of climate change.\",\"authors\":\"Diane R Campbell, John M Powers, Justin Kipness\",\"doi\":\"10.1093/evlett/qraf019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Evolutionary adaptation can allow a population to persist in the face of a new environmental challenge. With many populations now threatened by environmental change, it is important to understand whether this process of evolutionary rescue is feasible under natural conditions, yet work on this topic has been largely theoretical. We used unique long-term data to parameterize deterministic and stochastic models of the contribution of 1 trait to evolutionary rescue using field estimates for the subalpine plant <i>Ipomopsis aggregata</i> and hybrids with its close relative <i>I. tenuituba</i>. In the absence of evolution or plasticity, the 2 studied populations are projected to go locally extinct due to earlier snowmelt under climate change, which imposes drought conditions. Phenotypic selection on specific leaf area (SLA) was estimated in 12 years and multiple populations. Those data on selection and its environmental sensitivity to annual snowmelt timing in the spring were combined with previous data on heritability of the trait, phenotypic plasticity of the trait, and the impact of snowmelt timing on mean absolute fitness. Selection favored low values of SLA (thicker leaves). The evolutionary response to selection on that single trait was insufficient to allow evolutionary rescue by itself, but in combination with phenotypic plasticity it promoted evolutionary rescue in 1 of the 2 populations. The number of years until population size would stop declining and begin to rise again was heavily dependent upon stochastic environmental changes in snowmelt timing around the trend line. Our study illustrates how field estimates of quantitative genetic parameters can be used to predict the likelihood of evolutionary rescue. Although a complete set of parameter estimates are generally unavailable, it may also be possible to predict the general likelihood of evolutionary rescue based on published ranges for phenotypic selection and heritability and the extent to which early snowmelt impacts fitness.</p>\",\"PeriodicalId\":48629,\"journal\":{\"name\":\"Evolution Letters\",\"volume\":\"9 5\",\"pages\":\"533-547\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12492211/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolution Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/evlett/qraf019\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/evlett/qraf019","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
Predicting the contribution of single trait evolution to rescuing a plant population from demographic impacts of climate change.
Evolutionary adaptation can allow a population to persist in the face of a new environmental challenge. With many populations now threatened by environmental change, it is important to understand whether this process of evolutionary rescue is feasible under natural conditions, yet work on this topic has been largely theoretical. We used unique long-term data to parameterize deterministic and stochastic models of the contribution of 1 trait to evolutionary rescue using field estimates for the subalpine plant Ipomopsis aggregata and hybrids with its close relative I. tenuituba. In the absence of evolution or plasticity, the 2 studied populations are projected to go locally extinct due to earlier snowmelt under climate change, which imposes drought conditions. Phenotypic selection on specific leaf area (SLA) was estimated in 12 years and multiple populations. Those data on selection and its environmental sensitivity to annual snowmelt timing in the spring were combined with previous data on heritability of the trait, phenotypic plasticity of the trait, and the impact of snowmelt timing on mean absolute fitness. Selection favored low values of SLA (thicker leaves). The evolutionary response to selection on that single trait was insufficient to allow evolutionary rescue by itself, but in combination with phenotypic plasticity it promoted evolutionary rescue in 1 of the 2 populations. The number of years until population size would stop declining and begin to rise again was heavily dependent upon stochastic environmental changes in snowmelt timing around the trend line. Our study illustrates how field estimates of quantitative genetic parameters can be used to predict the likelihood of evolutionary rescue. Although a complete set of parameter estimates are generally unavailable, it may also be possible to predict the general likelihood of evolutionary rescue based on published ranges for phenotypic selection and heritability and the extent to which early snowmelt impacts fitness.
期刊介绍:
Evolution Letters publishes cutting-edge new research in all areas of Evolutionary Biology.
Available exclusively online, and entirely open access, Evolution Letters consists of Letters - original pieces of research which form the bulk of papers - and Comments and Opinion - a forum for highlighting timely new research ideas for the evolutionary community.