[痴呆症的分子遗传学和蛋白质分子]。

Q4 Medicine
Maria Kano, Taisuke Tomita
{"title":"[痴呆症的分子遗传学和蛋白质分子]。","authors":"Maria Kano, Taisuke Tomita","doi":"10.11477/mf.030126030530050873","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD), the most common cause of dementia, is marked by the pathological accumulation of misfolded proteins in the brain. Its key pathological features include extracellular amyloid β (Aβ) plaques and intracellular tau neurofibrillary tangles, both of which contribute to synaptic dysfunction and neuronal death. Familial AD is linked to mutations in the APP, PSEN1, or PSEN2 genes, which promote increased Aβ production or aggregation. In contrast, frontotemporal dementia (FTD), including FTDP-17, is associated with MAPT mutations that lead to tau fibril accumulation independent of Aβ pathology. Recent advances in cryo-electron microscopy (cryo-EM) have revealed disease-specific conformations of Aβ and tau fibrils at atomic resolution, highlighting the role of structural polymorphism in disease progression. Aβ contributes to synaptic deficits and activates glial cells, thereby initiating neuroinflammatory responses. Genetic risk factors such as APOE and TREM2 influence these pathological processes. Transgenic mouse models carrying familial mutations have replicated certain aspects of AD pathology. However, most models fail to fully reproduce the human-like filament structures or the sequential progression from Aβ to tau pathology. Novel knock-in models, combined with cryo-EM-based validation, now provide a more accurate platform for studying disease mechanisms and developing targeted therapies.</p>","PeriodicalId":35984,"journal":{"name":"Neurological Surgery","volume":"53 5","pages":"873-882"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Molecular Genetics and Protein Molecules in Dementia].\",\"authors\":\"Maria Kano, Taisuke Tomita\",\"doi\":\"10.11477/mf.030126030530050873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD), the most common cause of dementia, is marked by the pathological accumulation of misfolded proteins in the brain. Its key pathological features include extracellular amyloid β (Aβ) plaques and intracellular tau neurofibrillary tangles, both of which contribute to synaptic dysfunction and neuronal death. Familial AD is linked to mutations in the APP, PSEN1, or PSEN2 genes, which promote increased Aβ production or aggregation. In contrast, frontotemporal dementia (FTD), including FTDP-17, is associated with MAPT mutations that lead to tau fibril accumulation independent of Aβ pathology. Recent advances in cryo-electron microscopy (cryo-EM) have revealed disease-specific conformations of Aβ and tau fibrils at atomic resolution, highlighting the role of structural polymorphism in disease progression. Aβ contributes to synaptic deficits and activates glial cells, thereby initiating neuroinflammatory responses. Genetic risk factors such as APOE and TREM2 influence these pathological processes. Transgenic mouse models carrying familial mutations have replicated certain aspects of AD pathology. However, most models fail to fully reproduce the human-like filament structures or the sequential progression from Aβ to tau pathology. Novel knock-in models, combined with cryo-EM-based validation, now provide a more accurate platform for studying disease mechanisms and developing targeted therapies.</p>\",\"PeriodicalId\":35984,\"journal\":{\"name\":\"Neurological Surgery\",\"volume\":\"53 5\",\"pages\":\"873-882\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurological Surgery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11477/mf.030126030530050873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurological Surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11477/mf.030126030530050873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病(AD)是痴呆症最常见的病因,其特点是大脑中错误折叠蛋白质的病理性积累。其主要病理特征包括细胞外β淀粉样蛋白(Aβ)斑块和细胞内tau神经原纤维缠结,两者都有助于突触功能障碍和神经元死亡。家族性AD与APP、PSEN1或PSEN2基因的突变有关,这些基因可促进Aβ产生或聚集增加。相比之下,额颞叶痴呆(FTD),包括FTDP-17,与MAPT突变相关,MAPT突变导致tau纤维积累,而不依赖于Aβ病理。冷冻电子显微镜(cryo-EM)的最新进展在原子分辨率上揭示了Aβ和tau原纤维的疾病特异性构象,突出了结构多态性在疾病进展中的作用。Aβ有助于突触缺陷并激活神经胶质细胞,从而引发神经炎症反应。遗传风险因素如APOE和TREM2影响这些病理过程。携带家族突变的转基因小鼠模型复制了AD病理的某些方面。然而,大多数模型不能完全复制类似人类的纤维结构或从Aβ到tau病理的顺序进展。新的敲入模型,结合基于冷冻电镜的验证,现在为研究疾病机制和开发靶向治疗提供了更准确的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Molecular Genetics and Protein Molecules in Dementia].

Alzheimer's disease (AD), the most common cause of dementia, is marked by the pathological accumulation of misfolded proteins in the brain. Its key pathological features include extracellular amyloid β (Aβ) plaques and intracellular tau neurofibrillary tangles, both of which contribute to synaptic dysfunction and neuronal death. Familial AD is linked to mutations in the APP, PSEN1, or PSEN2 genes, which promote increased Aβ production or aggregation. In contrast, frontotemporal dementia (FTD), including FTDP-17, is associated with MAPT mutations that lead to tau fibril accumulation independent of Aβ pathology. Recent advances in cryo-electron microscopy (cryo-EM) have revealed disease-specific conformations of Aβ and tau fibrils at atomic resolution, highlighting the role of structural polymorphism in disease progression. Aβ contributes to synaptic deficits and activates glial cells, thereby initiating neuroinflammatory responses. Genetic risk factors such as APOE and TREM2 influence these pathological processes. Transgenic mouse models carrying familial mutations have replicated certain aspects of AD pathology. However, most models fail to fully reproduce the human-like filament structures or the sequential progression from Aβ to tau pathology. Novel knock-in models, combined with cryo-EM-based validation, now provide a more accurate platform for studying disease mechanisms and developing targeted therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurological Surgery
Neurological Surgery Medicine-Medicine (all)
自引率
0.00%
发文量
99
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信