深入挖掘心血管血浆蛋白质组学:当前平台的机遇和局限性。

IF 5.5 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Pich Chhay, Owen Tang, Lizhuo Ai, Stuart J Cordwell, Michael P Gray, Jean Y H Yang, Jennifer E Van Eyk, Peter J Psaltis, Gemma A Figtree
{"title":"深入挖掘心血管血浆蛋白质组学:当前平台的机遇和局限性。","authors":"Pich Chhay, Owen Tang, Lizhuo Ai, Stuart J Cordwell, Michael P Gray, Jean Y H Yang, Jennifer E Van Eyk, Peter J Psaltis, Gemma A Figtree","doi":"10.1161/CIRCGEN.125.005198","DOIUrl":null,"url":null,"abstract":"<p><p>Coronary artery disease remains the leading cause of death worldwide. One of the greatest developments in preventive cardiology has been the identification and treatment of standard modifiable risk factors associated with coronary artery disease. However, despite advances in the management of standard modifiable risk factors, there is an escalating number of patients who continue to present with acute coronary syndromes, a trend that is particularly concerning given the decreasing age-adjusted incidence rates of these conditions. This persistent clinical challenge underscores the urgency to explore alternative approaches for early detection and improved risk stratification. In recent years, the emergence of proteomics technologies has brought forth promising avenues for the discovery of novel biomarkers that hold the potential to revolutionize the timely detection and management of coronary artery disease. Proteomics enables the high throughput and often unbiased analysis of protein abundance, modifications, and interactions within pathways relevant to cardiovascular disease pathogenesis. Of particular importance is the capability to detect low-abundance proteins including those with currently unknown functions. While the functional assessment of these proteins aligns more with mechanistic studies, their role in biomarker discovery is equally important. Such detection may provide new insights into cardiac pathophysiology, including potential new markers for early disease detection and risk assessment. Although the latest proteomics technology and bioinformatic approaches do provide the opportunity for novel discoveries, understanding the limitations of each technology platform is important. This review provides an updated overview of major proteomic platforms and discusses their methodological strengths, constraints, and applications, using recent coronary artery disease studies as illustrative examples. By integrating proteomics data with clinical information, including advanced noninvasive imaging techniques and other omics disciplines, such as genomics and metabolomics, we can deepen our understanding of disease mechanisms and improve risk stratification. Although the discovery of novel biomarkers represents a significant step forward in the field, their true clinical value is contingent upon their rigorous validation in clinical trials and implementation studies. With our current capabilities and emerging advancements, we are well-positioned to advance proteomics-guided precision medicine in cardiovascular care over the coming decade.</p>","PeriodicalId":10326,"journal":{"name":"Circulation: Genomic and Precision Medicine","volume":" ","pages":"e005198"},"PeriodicalIF":5.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Digging Deeper Into Cardiovascular Plasma Proteomics: Opportunities and Limitations of Current Platforms.\",\"authors\":\"Pich Chhay, Owen Tang, Lizhuo Ai, Stuart J Cordwell, Michael P Gray, Jean Y H Yang, Jennifer E Van Eyk, Peter J Psaltis, Gemma A Figtree\",\"doi\":\"10.1161/CIRCGEN.125.005198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Coronary artery disease remains the leading cause of death worldwide. One of the greatest developments in preventive cardiology has been the identification and treatment of standard modifiable risk factors associated with coronary artery disease. However, despite advances in the management of standard modifiable risk factors, there is an escalating number of patients who continue to present with acute coronary syndromes, a trend that is particularly concerning given the decreasing age-adjusted incidence rates of these conditions. This persistent clinical challenge underscores the urgency to explore alternative approaches for early detection and improved risk stratification. In recent years, the emergence of proteomics technologies has brought forth promising avenues for the discovery of novel biomarkers that hold the potential to revolutionize the timely detection and management of coronary artery disease. Proteomics enables the high throughput and often unbiased analysis of protein abundance, modifications, and interactions within pathways relevant to cardiovascular disease pathogenesis. Of particular importance is the capability to detect low-abundance proteins including those with currently unknown functions. While the functional assessment of these proteins aligns more with mechanistic studies, their role in biomarker discovery is equally important. Such detection may provide new insights into cardiac pathophysiology, including potential new markers for early disease detection and risk assessment. Although the latest proteomics technology and bioinformatic approaches do provide the opportunity for novel discoveries, understanding the limitations of each technology platform is important. This review provides an updated overview of major proteomic platforms and discusses their methodological strengths, constraints, and applications, using recent coronary artery disease studies as illustrative examples. By integrating proteomics data with clinical information, including advanced noninvasive imaging techniques and other omics disciplines, such as genomics and metabolomics, we can deepen our understanding of disease mechanisms and improve risk stratification. Although the discovery of novel biomarkers represents a significant step forward in the field, their true clinical value is contingent upon their rigorous validation in clinical trials and implementation studies. With our current capabilities and emerging advancements, we are well-positioned to advance proteomics-guided precision medicine in cardiovascular care over the coming decade.</p>\",\"PeriodicalId\":10326,\"journal\":{\"name\":\"Circulation: Genomic and Precision Medicine\",\"volume\":\" \",\"pages\":\"e005198\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation: Genomic and Precision Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1161/CIRCGEN.125.005198\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation: Genomic and Precision Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCGEN.125.005198","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

冠状动脉疾病仍然是世界范围内死亡的主要原因。预防心脏病学的最大发展之一是识别和治疗与冠状动脉疾病相关的标准可改变的危险因素。然而,尽管在标准可改变危险因素的管理方面取得了进展,但仍有越来越多的患者继续出现急性冠状动脉综合征,这一趋势尤其令人担忧,因为这些疾病的年龄调整发病率正在下降。这一持续的临床挑战强调了探索早期发现和改善风险分层的替代方法的紧迫性。近年来,蛋白质组学技术的出现为发现新的生物标志物提供了有希望的途径,这些生物标志物有可能彻底改变冠状动脉疾病的及时检测和管理。蛋白质组学能够对与心血管疾病发病机制相关的途径中的蛋白质丰度、修饰和相互作用进行高通量和通常无偏倚的分析。特别重要的是检测低丰度蛋白质的能力,包括那些目前未知功能的蛋白质。虽然这些蛋白质的功能评估更多地与机制研究相一致,但它们在生物标志物发现中的作用同样重要。这种检测可能为心脏病理生理学提供新的见解,包括潜在的早期疾病检测和风险评估的新标志物。尽管最新的蛋白质组学技术和生物信息学方法确实为新发现提供了机会,但了解每种技术平台的局限性很重要。这篇综述提供了主要蛋白质组学平台的最新概述,并以最近的冠状动脉疾病研究为例,讨论了它们的方法学优势、限制和应用。通过将蛋白质组学数据与临床信息相结合,包括先进的无创成像技术和其他组学学科,如基因组学和代谢组学,我们可以加深对疾病机制的理解,改善风险分层。尽管新的生物标志物的发现代表了该领域向前迈出的重要一步,但它们真正的临床价值取决于它们在临床试验和实施研究中的严格验证。凭借我们目前的能力和新兴的进步,我们有能力在未来十年推进蛋白质组学指导的心血管护理精准医学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Digging Deeper Into Cardiovascular Plasma Proteomics: Opportunities and Limitations of Current Platforms.

Coronary artery disease remains the leading cause of death worldwide. One of the greatest developments in preventive cardiology has been the identification and treatment of standard modifiable risk factors associated with coronary artery disease. However, despite advances in the management of standard modifiable risk factors, there is an escalating number of patients who continue to present with acute coronary syndromes, a trend that is particularly concerning given the decreasing age-adjusted incidence rates of these conditions. This persistent clinical challenge underscores the urgency to explore alternative approaches for early detection and improved risk stratification. In recent years, the emergence of proteomics technologies has brought forth promising avenues for the discovery of novel biomarkers that hold the potential to revolutionize the timely detection and management of coronary artery disease. Proteomics enables the high throughput and often unbiased analysis of protein abundance, modifications, and interactions within pathways relevant to cardiovascular disease pathogenesis. Of particular importance is the capability to detect low-abundance proteins including those with currently unknown functions. While the functional assessment of these proteins aligns more with mechanistic studies, their role in biomarker discovery is equally important. Such detection may provide new insights into cardiac pathophysiology, including potential new markers for early disease detection and risk assessment. Although the latest proteomics technology and bioinformatic approaches do provide the opportunity for novel discoveries, understanding the limitations of each technology platform is important. This review provides an updated overview of major proteomic platforms and discusses their methodological strengths, constraints, and applications, using recent coronary artery disease studies as illustrative examples. By integrating proteomics data with clinical information, including advanced noninvasive imaging techniques and other omics disciplines, such as genomics and metabolomics, we can deepen our understanding of disease mechanisms and improve risk stratification. Although the discovery of novel biomarkers represents a significant step forward in the field, their true clinical value is contingent upon their rigorous validation in clinical trials and implementation studies. With our current capabilities and emerging advancements, we are well-positioned to advance proteomics-guided precision medicine in cardiovascular care over the coming decade.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Circulation: Genomic and Precision Medicine
Circulation: Genomic and Precision Medicine Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
9.20
自引率
5.40%
发文量
144
期刊介绍: Circulation: Genomic and Precision Medicine is a distinguished journal dedicated to advancing the frontiers of cardiovascular genomics and precision medicine. It publishes a diverse array of original research articles that delve into the genetic and molecular underpinnings of cardiovascular diseases. The journal's scope is broad, encompassing studies from human subjects to laboratory models, and from in vitro experiments to computational simulations. Circulation: Genomic and Precision Medicine is committed to publishing studies that have direct relevance to human cardiovascular biology and disease, with the ultimate goal of improving patient care and outcomes. The journal serves as a platform for researchers to share their groundbreaking work, fostering collaboration and innovation in the field of cardiovascular genomics and precision medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信