{"title":"一种新的磷酸二酯酶5抑制剂CPD1通过调节Akt/NF-κB通路抑制活化的肝星状细胞来减轻肝纤维化。","authors":"Wenbin Feng, Jianqin Yang, Jiaxiu Lei, Limei Li, Changfeng Shan, Shenjie Chen, Zongmeng Zhang, Zhenggang Zhao, Sujin Zhou, Allan Zijian Zhao, Yunping Mu, Fanghong Li","doi":"10.1016/j.bcp.2025.117388","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatic fibrosis is a progressive disorder marked by abnormal extracellular matrix buildup, with no effective antifibrotic drugs currently available. Recent evidence indicates that inhibiting phosphodiesterase 5 (PDE5) can have significant benefits for fibrotic diseases, suggesting PDE5 inhibitors may be effective antifibrotic agents. This study aimed to develop a new PDE5 inhibitor, potassium salt crystal form B (CPD1), which has much greater aqueous solubility than sildenafil. We assessed CPD1's efficacy in inhibiting hepatic stellate cells (HSCs) activation and investigated its mechanism of action. The therapeutic effect of CPD1 was studied in a carbon tetrachloride-induced liver fibrosis model, exploring its antifibrotic mechanisms via cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG1) or Akt inhibitors and PKG1 overexpression in LX-2 cells. As anticipated, the expression of PDE5A was significantly elevated in both human and mouse fibrotic liver tissues, as well as in LX-2 cells induced by transforming growth factor-beta 1 (TGFβ1). In vivo, CPD1 reduced serum transaminases in a dose-dependent manner, mitigated liver damage, decreased collagen deposition, and suppressed the activation of HSCs. Additionally, CPD1 is more effective than sildenafil at a lower dosage. In vitro, CPD1 inhibited TGFβ1-induced activation of LX-2 and reduced the expression of fibrotic marker proteins and genes. Notably, the anti-fibrotic effects of CPD1 were completely negated following the administration of a PKG1 inhibitor. Mechanistically, the CPD1 intervention effectively countered the TGFβ1-induced increase in p-IκBα and p-P65. This study demonstrated that CPD1 mitigates liver fibrosis by activating the cGMP/PKG pathway, which in turn inhibits the AKT/NF-κB pathway. Therefore, it may be considered a potential therapeutic agent that warrants further investigation for the treatment of liver fibrosis.</p>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":" ","pages":"117388"},"PeriodicalIF":5.6000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel phosphodiesterase 5 inhibitor, CPD1, alleviates liver fibrosis by modulating the Akt/NF-κB pathway to inhibit activated hepatic stellate cells.\",\"authors\":\"Wenbin Feng, Jianqin Yang, Jiaxiu Lei, Limei Li, Changfeng Shan, Shenjie Chen, Zongmeng Zhang, Zhenggang Zhao, Sujin Zhou, Allan Zijian Zhao, Yunping Mu, Fanghong Li\",\"doi\":\"10.1016/j.bcp.2025.117388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hepatic fibrosis is a progressive disorder marked by abnormal extracellular matrix buildup, with no effective antifibrotic drugs currently available. Recent evidence indicates that inhibiting phosphodiesterase 5 (PDE5) can have significant benefits for fibrotic diseases, suggesting PDE5 inhibitors may be effective antifibrotic agents. This study aimed to develop a new PDE5 inhibitor, potassium salt crystal form B (CPD1), which has much greater aqueous solubility than sildenafil. We assessed CPD1's efficacy in inhibiting hepatic stellate cells (HSCs) activation and investigated its mechanism of action. The therapeutic effect of CPD1 was studied in a carbon tetrachloride-induced liver fibrosis model, exploring its antifibrotic mechanisms via cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG1) or Akt inhibitors and PKG1 overexpression in LX-2 cells. As anticipated, the expression of PDE5A was significantly elevated in both human and mouse fibrotic liver tissues, as well as in LX-2 cells induced by transforming growth factor-beta 1 (TGFβ1). In vivo, CPD1 reduced serum transaminases in a dose-dependent manner, mitigated liver damage, decreased collagen deposition, and suppressed the activation of HSCs. Additionally, CPD1 is more effective than sildenafil at a lower dosage. In vitro, CPD1 inhibited TGFβ1-induced activation of LX-2 and reduced the expression of fibrotic marker proteins and genes. Notably, the anti-fibrotic effects of CPD1 were completely negated following the administration of a PKG1 inhibitor. Mechanistically, the CPD1 intervention effectively countered the TGFβ1-induced increase in p-IκBα and p-P65. This study demonstrated that CPD1 mitigates liver fibrosis by activating the cGMP/PKG pathway, which in turn inhibits the AKT/NF-κB pathway. Therefore, it may be considered a potential therapeutic agent that warrants further investigation for the treatment of liver fibrosis.</p>\",\"PeriodicalId\":8806,\"journal\":{\"name\":\"Biochemical pharmacology\",\"volume\":\" \",\"pages\":\"117388\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bcp.2025.117388\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.bcp.2025.117388","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
A novel phosphodiesterase 5 inhibitor, CPD1, alleviates liver fibrosis by modulating the Akt/NF-κB pathway to inhibit activated hepatic stellate cells.
Hepatic fibrosis is a progressive disorder marked by abnormal extracellular matrix buildup, with no effective antifibrotic drugs currently available. Recent evidence indicates that inhibiting phosphodiesterase 5 (PDE5) can have significant benefits for fibrotic diseases, suggesting PDE5 inhibitors may be effective antifibrotic agents. This study aimed to develop a new PDE5 inhibitor, potassium salt crystal form B (CPD1), which has much greater aqueous solubility than sildenafil. We assessed CPD1's efficacy in inhibiting hepatic stellate cells (HSCs) activation and investigated its mechanism of action. The therapeutic effect of CPD1 was studied in a carbon tetrachloride-induced liver fibrosis model, exploring its antifibrotic mechanisms via cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG1) or Akt inhibitors and PKG1 overexpression in LX-2 cells. As anticipated, the expression of PDE5A was significantly elevated in both human and mouse fibrotic liver tissues, as well as in LX-2 cells induced by transforming growth factor-beta 1 (TGFβ1). In vivo, CPD1 reduced serum transaminases in a dose-dependent manner, mitigated liver damage, decreased collagen deposition, and suppressed the activation of HSCs. Additionally, CPD1 is more effective than sildenafil at a lower dosage. In vitro, CPD1 inhibited TGFβ1-induced activation of LX-2 and reduced the expression of fibrotic marker proteins and genes. Notably, the anti-fibrotic effects of CPD1 were completely negated following the administration of a PKG1 inhibitor. Mechanistically, the CPD1 intervention effectively countered the TGFβ1-induced increase in p-IκBα and p-P65. This study demonstrated that CPD1 mitigates liver fibrosis by activating the cGMP/PKG pathway, which in turn inhibits the AKT/NF-κB pathway. Therefore, it may be considered a potential therapeutic agent that warrants further investigation for the treatment of liver fibrosis.
期刊介绍:
Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics.
The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process.
All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review.
While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.