Co3−xMnxO4电催化析氧:结构与反应性的关系

IF 3 3区 化学 Q2 CHEMISTRY, APPLIED
Saraswati Roy, Sounak Roy
{"title":"Co3−xMnxO4电催化析氧:结构与反应性的关系","authors":"Saraswati Roy,&nbsp;Sounak Roy","doi":"10.1007/s11244-025-02163-3","DOIUrl":null,"url":null,"abstract":"<p>Water electrolysis, driven by renewable energy, offers a sustainable route for alternate energy. The oxygen evolution reaction, the key anodic reaction of water electrolysis is a complex reaction due to its four-electron process involving multiple oxygen intermediates. Mixed-valence spinel oxides, such as Co<sub>3</sub>O<sub>4</sub> and Mn<sub>3</sub>O<sub>4</sub> have attracted significant attention as anodic catalyst owing to the low cost, earth abundance, low toxicity, and multiple oxidation states. Despite extensive studies on activity descriptors and the mechanistic aspects of the oxygen evolution reaction over these spinel oxides, a comprehensive understanding of the structure–reactivity correlation remains underexplored. While Co<sub>3</sub>O<sub>4</sub> adopts a cubic structure, Mn<sub>3</sub>O<sub>4</sub> crystallizes in a tetragonal form due to Jahn–Teller distortion, making intermediate Co<sub>3 − x</sub>Mn<sub>x</sub>O<sub>4</sub> solid solutions ideal for studying structure–reactivity correlations. Phase-pure Co<sub>2</sub>MnO<sub>4</sub> (cubic) and CoMn<sub>2</sub>O<sub>4</sub> (tetragonal) were synthesized via combustion synthesis. Despite similar porosity and surface area, CoMn<sub>2</sub>O<sub>4</sub> showed higher electrochemical surface area, better charge transfer, and more oxygen vacancies. Mn-rich CoMn<sub>2</sub>O<sub>4</sub> exhibited superior OER activity, requiring just 260 mV overpotential at 10 mA cm<sup>− 2</sup>, alongside a low Tafel slope of 55 mV dec<sup>− 1</sup> and activation energy of 10 kJ mol<sup>− 1</sup>. Surface analysis confirmed the formation of <span>\\(\\:{\\text{C}\\text{o}}_{\\text{o}\\text{h}}^{3+}\\)</span><sub>–</sub>OOH intermediates, highlighting the role of optimal doping and structural tuning in enhancing oxygen evolution reaction performance and stability.</p>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"68 18-19","pages":"2281 - 2295"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrocatalytic Oxygen Evolution Over Co3 − xMnxO4: Correlating Structure with Reactivity\",\"authors\":\"Saraswati Roy,&nbsp;Sounak Roy\",\"doi\":\"10.1007/s11244-025-02163-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Water electrolysis, driven by renewable energy, offers a sustainable route for alternate energy. The oxygen evolution reaction, the key anodic reaction of water electrolysis is a complex reaction due to its four-electron process involving multiple oxygen intermediates. Mixed-valence spinel oxides, such as Co<sub>3</sub>O<sub>4</sub> and Mn<sub>3</sub>O<sub>4</sub> have attracted significant attention as anodic catalyst owing to the low cost, earth abundance, low toxicity, and multiple oxidation states. Despite extensive studies on activity descriptors and the mechanistic aspects of the oxygen evolution reaction over these spinel oxides, a comprehensive understanding of the structure–reactivity correlation remains underexplored. While Co<sub>3</sub>O<sub>4</sub> adopts a cubic structure, Mn<sub>3</sub>O<sub>4</sub> crystallizes in a tetragonal form due to Jahn–Teller distortion, making intermediate Co<sub>3 − x</sub>Mn<sub>x</sub>O<sub>4</sub> solid solutions ideal for studying structure–reactivity correlations. Phase-pure Co<sub>2</sub>MnO<sub>4</sub> (cubic) and CoMn<sub>2</sub>O<sub>4</sub> (tetragonal) were synthesized via combustion synthesis. Despite similar porosity and surface area, CoMn<sub>2</sub>O<sub>4</sub> showed higher electrochemical surface area, better charge transfer, and more oxygen vacancies. Mn-rich CoMn<sub>2</sub>O<sub>4</sub> exhibited superior OER activity, requiring just 260 mV overpotential at 10 mA cm<sup>− 2</sup>, alongside a low Tafel slope of 55 mV dec<sup>− 1</sup> and activation energy of 10 kJ mol<sup>− 1</sup>. Surface analysis confirmed the formation of <span>\\\\(\\\\:{\\\\text{C}\\\\text{o}}_{\\\\text{o}\\\\text{h}}^{3+}\\\\)</span><sub>–</sub>OOH intermediates, highlighting the role of optimal doping and structural tuning in enhancing oxygen evolution reaction performance and stability.</p>\",\"PeriodicalId\":801,\"journal\":{\"name\":\"Topics in Catalysis\",\"volume\":\"68 18-19\",\"pages\":\"2281 - 2295\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topics in Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11244-025-02163-3\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Catalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11244-025-02163-3","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

由可再生能源驱动的水电解为替代能源提供了一条可持续发展的途径。析氧反应是电解水的关键阳极反应,是一个涉及多种氧中间体的四电子复杂反应。Co3O4和Mn3O4等混价尖晶石氧化物因其成本低、丰度高、毒性低、氧化态多样等优点而成为阳极催化剂。尽管对这些尖晶石氧化物的析氧反应的活性描述符和机理进行了广泛的研究,但对结构-反应性相关性的全面理解仍有待探索。Co3O4为立方结构,而Mn3O4由于Jahn-Teller畸变而结晶为四方结构,使得中间Co3−xMnxO4固溶体成为研究结构-反应性相关性的理想选择。采用燃烧合成法合成了相纯Co2MnO4(立方)和CoMn2O4(四方)。尽管CoMn2O4的孔隙率和比表面积相似,但其电化学比表面积更高,电荷转移更好,氧空位更多。富锰的CoMn2O4表现出优异的OER活性,在10 mA cm−2下仅需260 mV过电位,Tafel斜率为55 mV dec−1,活化能为10 kJ mol−1。表面分析证实了\(\:{\text{C}\text{o}}_{\text{o}\text{h}}^{3+}\) -OOH中间体的形成,突出了优化掺杂和结构调整在提高析氧反应性能和稳定性方面的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrocatalytic Oxygen Evolution Over Co3 − xMnxO4: Correlating Structure with Reactivity

Water electrolysis, driven by renewable energy, offers a sustainable route for alternate energy. The oxygen evolution reaction, the key anodic reaction of water electrolysis is a complex reaction due to its four-electron process involving multiple oxygen intermediates. Mixed-valence spinel oxides, such as Co3O4 and Mn3O4 have attracted significant attention as anodic catalyst owing to the low cost, earth abundance, low toxicity, and multiple oxidation states. Despite extensive studies on activity descriptors and the mechanistic aspects of the oxygen evolution reaction over these spinel oxides, a comprehensive understanding of the structure–reactivity correlation remains underexplored. While Co3O4 adopts a cubic structure, Mn3O4 crystallizes in a tetragonal form due to Jahn–Teller distortion, making intermediate Co3 − xMnxO4 solid solutions ideal for studying structure–reactivity correlations. Phase-pure Co2MnO4 (cubic) and CoMn2O4 (tetragonal) were synthesized via combustion synthesis. Despite similar porosity and surface area, CoMn2O4 showed higher electrochemical surface area, better charge transfer, and more oxygen vacancies. Mn-rich CoMn2O4 exhibited superior OER activity, requiring just 260 mV overpotential at 10 mA cm− 2, alongside a low Tafel slope of 55 mV dec− 1 and activation energy of 10 kJ mol− 1. Surface analysis confirmed the formation of \(\:{\text{C}\text{o}}_{\text{o}\text{h}}^{3+}\)OOH intermediates, highlighting the role of optimal doping and structural tuning in enhancing oxygen evolution reaction performance and stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topics in Catalysis
Topics in Catalysis 化学-物理化学
CiteScore
5.70
自引率
5.60%
发文量
197
审稿时长
2 months
期刊介绍: Topics in Catalysis publishes topical collections in all fields of catalysis which are composed only of invited articles from leading authors. The journal documents today’s emerging and critical trends in all branches of catalysis. Each themed issue is organized by renowned Guest Editors in collaboration with the Editors-in-Chief. Proposals for new topics are welcome and should be submitted directly to the Editors-in-Chief. The publication of individual uninvited original research articles can be sent to our sister journal Catalysis Letters. This journal aims for rapid publication of high-impact original research articles in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信