{"title":"基于支持向量机的广域网安全多模态威胁检测算法","authors":"Bo Yuan","doi":"10.13052/jwe1540-9589.2465","DOIUrl":null,"url":null,"abstract":"Wide area networks (WANs) are increasingly susceptible to sophisticated cyber threats, particularly as critical infrastructure becomes more interconnected. For example, computing-first networks (CFNs) often traverse WANs at edge access nodes, making them more vulnerable to security threats. This paper proposes a multimodal threat detection framework that combines traffic statistics, system logs, and user behavior patterns to deliver interpretable and real-time classification of network threats. The system applies feature normalization and uses principal component analysis (PCA) to reduce dimensionality. A support vector machine (SVM) with a radial basis function kernel is then used to detect non-linear attack patterns. A web-based architecture enables real-time deployment via REST APIs, and extensive evaluations on the CICIDS 2017 and UNSW-NB15 datasets demonstrate high accuracy (up to 96.8%) and low-latency inference. Ablation studies confirm the importance of multimodal fusion, and benchmark tests validate scalability and system responsiveness. This work offers a deployable and efficient solution for real-time WAN security, with promising applications in energy systems, public infrastructure, and enterprise networks.","PeriodicalId":49952,"journal":{"name":"Journal of Web Engineering","volume":"24 6","pages":"973-996"},"PeriodicalIF":1.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11194294","citationCount":"0","resultStr":"{\"title\":\"A Multimodal Threat Detection Algorithm for Wide Area Network Security Based on Support Vector Machines\",\"authors\":\"Bo Yuan\",\"doi\":\"10.13052/jwe1540-9589.2465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wide area networks (WANs) are increasingly susceptible to sophisticated cyber threats, particularly as critical infrastructure becomes more interconnected. For example, computing-first networks (CFNs) often traverse WANs at edge access nodes, making them more vulnerable to security threats. This paper proposes a multimodal threat detection framework that combines traffic statistics, system logs, and user behavior patterns to deliver interpretable and real-time classification of network threats. The system applies feature normalization and uses principal component analysis (PCA) to reduce dimensionality. A support vector machine (SVM) with a radial basis function kernel is then used to detect non-linear attack patterns. A web-based architecture enables real-time deployment via REST APIs, and extensive evaluations on the CICIDS 2017 and UNSW-NB15 datasets demonstrate high accuracy (up to 96.8%) and low-latency inference. Ablation studies confirm the importance of multimodal fusion, and benchmark tests validate scalability and system responsiveness. This work offers a deployable and efficient solution for real-time WAN security, with promising applications in energy systems, public infrastructure, and enterprise networks.\",\"PeriodicalId\":49952,\"journal\":{\"name\":\"Journal of Web Engineering\",\"volume\":\"24 6\",\"pages\":\"973-996\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11194294\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Web Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11194294/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Web Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11194294/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
A Multimodal Threat Detection Algorithm for Wide Area Network Security Based on Support Vector Machines
Wide area networks (WANs) are increasingly susceptible to sophisticated cyber threats, particularly as critical infrastructure becomes more interconnected. For example, computing-first networks (CFNs) often traverse WANs at edge access nodes, making them more vulnerable to security threats. This paper proposes a multimodal threat detection framework that combines traffic statistics, system logs, and user behavior patterns to deliver interpretable and real-time classification of network threats. The system applies feature normalization and uses principal component analysis (PCA) to reduce dimensionality. A support vector machine (SVM) with a radial basis function kernel is then used to detect non-linear attack patterns. A web-based architecture enables real-time deployment via REST APIs, and extensive evaluations on the CICIDS 2017 and UNSW-NB15 datasets demonstrate high accuracy (up to 96.8%) and low-latency inference. Ablation studies confirm the importance of multimodal fusion, and benchmark tests validate scalability and system responsiveness. This work offers a deployable and efficient solution for real-time WAN security, with promising applications in energy systems, public infrastructure, and enterprise networks.
期刊介绍:
The World Wide Web and its associated technologies have become a major implementation and delivery platform for a large variety of applications, ranging from simple institutional information Web sites to sophisticated supply-chain management systems, financial applications, e-government, distance learning, and entertainment, among others. Such applications, in addition to their intrinsic functionality, also exhibit the more complex behavior of distributed applications.