Chao Chen , Shiyu Du , Qianglan Lu , Xueting Shen , Shuai Ding , Lihua Qu , Yamei Gao , Zhiqiang Yin , Zhe Li , Yujun Song , Xin Han
{"title":"利用近红外上转换纳米机器时空递送Cas9核糖核蛋白/DNAzyme逻辑系统用于精确免疫治疗","authors":"Chao Chen , Shiyu Du , Qianglan Lu , Xueting Shen , Shuai Ding , Lihua Qu , Yamei Gao , Zhiqiang Yin , Zhe Li , Yujun Song , Xin Han","doi":"10.1016/j.apsb.2025.07.010","DOIUrl":null,"url":null,"abstract":"<div><div>Gene therapy, harnessing the power of CRISPR-Cas9 and/or DNAzyme systems, stands as a pivotal approach in cancer therapy, enabling the meticulous manipulation of genes pivotal to tumorigenesis and immunity. However, the pursuit of precise gene therapy encounters formidable hurdles. Herein, a near-infrared upconversion theranostic nanomachine is devised and tailors for CRISPR-Cas9/DNAzyme systems mediate precise gene therapy. An ingenious logic DNAzyme system consists of Chain 1 (C1)/Chain 2 (C2) and endogenous lncRNA is designed. We employ manganese modified upconversion nanoparticles for carrying ultraviolet-responsive C1–PC linker–C2 (C<sub>2</sub>P) chain and Cas9 ribonucleoprotein (RNP), with outermost coats with hyaluronic acid. Upon reaching tumor microenvironment (TME), the released Mn<sup>2+</sup> ions orchestrate a trifecta: facilitating endosomal escape, activating cGAS–STING signaling, and enabling T1-magnetic resonance imaging. Under near-infrared irradiation, Cas9 RNP/C<sub>2</sub>P complex dissociates, releasing Cas9 RNP into the nucleus to perform gene editing of Ptpn2, while C1/C2 chains self-assemble with endogenous lncRNA to form a functional DNAzyme system, targeting PD-L1 mRNA for gene silencing. This strategy remodels the TME by activating cGAS–STING signaling and dual immune checkpoints blockade, thus realizing tumor elimination. Our theranostic nanomachine armed with the CRISPR-Cas9/DNAzyme logic systems, represents a resourceful and promising strategy for advancing cancer systemic immunotherapy and precise gene therapy.</div></div>","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":"15 10","pages":"Pages 5431-5443"},"PeriodicalIF":14.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporally delivery of Cas9 ribonucleoprotein/DNAzyme logic systems using near-infrared upconversion nanomachine for precise immunotherapy\",\"authors\":\"Chao Chen , Shiyu Du , Qianglan Lu , Xueting Shen , Shuai Ding , Lihua Qu , Yamei Gao , Zhiqiang Yin , Zhe Li , Yujun Song , Xin Han\",\"doi\":\"10.1016/j.apsb.2025.07.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Gene therapy, harnessing the power of CRISPR-Cas9 and/or DNAzyme systems, stands as a pivotal approach in cancer therapy, enabling the meticulous manipulation of genes pivotal to tumorigenesis and immunity. However, the pursuit of precise gene therapy encounters formidable hurdles. Herein, a near-infrared upconversion theranostic nanomachine is devised and tailors for CRISPR-Cas9/DNAzyme systems mediate precise gene therapy. An ingenious logic DNAzyme system consists of Chain 1 (C1)/Chain 2 (C2) and endogenous lncRNA is designed. We employ manganese modified upconversion nanoparticles for carrying ultraviolet-responsive C1–PC linker–C2 (C<sub>2</sub>P) chain and Cas9 ribonucleoprotein (RNP), with outermost coats with hyaluronic acid. Upon reaching tumor microenvironment (TME), the released Mn<sup>2+</sup> ions orchestrate a trifecta: facilitating endosomal escape, activating cGAS–STING signaling, and enabling T1-magnetic resonance imaging. Under near-infrared irradiation, Cas9 RNP/C<sub>2</sub>P complex dissociates, releasing Cas9 RNP into the nucleus to perform gene editing of Ptpn2, while C1/C2 chains self-assemble with endogenous lncRNA to form a functional DNAzyme system, targeting PD-L1 mRNA for gene silencing. This strategy remodels the TME by activating cGAS–STING signaling and dual immune checkpoints blockade, thus realizing tumor elimination. Our theranostic nanomachine armed with the CRISPR-Cas9/DNAzyme logic systems, represents a resourceful and promising strategy for advancing cancer systemic immunotherapy and precise gene therapy.</div></div>\",\"PeriodicalId\":6906,\"journal\":{\"name\":\"Acta Pharmaceutica Sinica. B\",\"volume\":\"15 10\",\"pages\":\"Pages 5431-5443\"},\"PeriodicalIF\":14.6000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Pharmaceutica Sinica. B\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211383525004800\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmaceutica Sinica. B","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211383525004800","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Spatiotemporally delivery of Cas9 ribonucleoprotein/DNAzyme logic systems using near-infrared upconversion nanomachine for precise immunotherapy
Gene therapy, harnessing the power of CRISPR-Cas9 and/or DNAzyme systems, stands as a pivotal approach in cancer therapy, enabling the meticulous manipulation of genes pivotal to tumorigenesis and immunity. However, the pursuit of precise gene therapy encounters formidable hurdles. Herein, a near-infrared upconversion theranostic nanomachine is devised and tailors for CRISPR-Cas9/DNAzyme systems mediate precise gene therapy. An ingenious logic DNAzyme system consists of Chain 1 (C1)/Chain 2 (C2) and endogenous lncRNA is designed. We employ manganese modified upconversion nanoparticles for carrying ultraviolet-responsive C1–PC linker–C2 (C2P) chain and Cas9 ribonucleoprotein (RNP), with outermost coats with hyaluronic acid. Upon reaching tumor microenvironment (TME), the released Mn2+ ions orchestrate a trifecta: facilitating endosomal escape, activating cGAS–STING signaling, and enabling T1-magnetic resonance imaging. Under near-infrared irradiation, Cas9 RNP/C2P complex dissociates, releasing Cas9 RNP into the nucleus to perform gene editing of Ptpn2, while C1/C2 chains self-assemble with endogenous lncRNA to form a functional DNAzyme system, targeting PD-L1 mRNA for gene silencing. This strategy remodels the TME by activating cGAS–STING signaling and dual immune checkpoints blockade, thus realizing tumor elimination. Our theranostic nanomachine armed with the CRISPR-Cas9/DNAzyme logic systems, represents a resourceful and promising strategy for advancing cancer systemic immunotherapy and precise gene therapy.
Acta Pharmaceutica Sinica. BPharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
22.40
自引率
5.50%
发文量
1051
审稿时长
19 weeks
期刊介绍:
The Journal of the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association oversees the peer review process for Acta Pharmaceutica Sinica. B (APSB).
Published monthly in English, APSB is dedicated to disseminating significant original research articles, rapid communications, and high-quality reviews that highlight recent advances across various pharmaceutical sciences domains. These encompass pharmacology, pharmaceutics, medicinal chemistry, natural products, pharmacognosy, pharmaceutical analysis, and pharmacokinetics.
A part of the Acta Pharmaceutica Sinica series, established in 1953 and indexed in prominent databases like Chemical Abstracts, Index Medicus, SciFinder Scholar, Biological Abstracts, International Pharmaceutical Abstracts, Cambridge Scientific Abstracts, and Current Bibliography on Science and Technology, APSB is sponsored by the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association. Its production and hosting are facilitated by Elsevier B.V. This collaborative effort ensures APSB's commitment to delivering valuable contributions to the pharmaceutical sciences community.