{"title":"量子信道编码:近似算法和强逆指数","authors":"Aadil Oufkir, Mario Berta","doi":"10.22331/q-2025-10-06-1877","DOIUrl":null,"url":null,"abstract":"We study relaxations of entanglement-assisted quantum channel coding and establish that non-signaling assistance and a natural semi-definite programming relaxation — termed meta-converse — are equivalent in terms of success probabilities. We then present a rounding procedure that transforms any non-signaling-assisted strategy into an entanglement-assisted one and prove an approximation ratio of $(1 – e^{-1})$ in success probabilities for the special case of measurement channels. For fully quantum channels, we give a weaker (dimension dependent) approximation ratio, that is nevertheless still tight to characterize the strong converse exponent of entanglement-assisted channel coding [Li and Yao, IEEE Tran. Inf. Theory (2024)]. Our derivations leverage ideas from position-based coding, quantum decoupling theorems, the matrix Chernoff inequality, and input flattening techniques.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"115 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum channel coding: Approximation algorithms and strong converse exponents\",\"authors\":\"Aadil Oufkir, Mario Berta\",\"doi\":\"10.22331/q-2025-10-06-1877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study relaxations of entanglement-assisted quantum channel coding and establish that non-signaling assistance and a natural semi-definite programming relaxation — termed meta-converse — are equivalent in terms of success probabilities. We then present a rounding procedure that transforms any non-signaling-assisted strategy into an entanglement-assisted one and prove an approximation ratio of $(1 – e^{-1})$ in success probabilities for the special case of measurement channels. For fully quantum channels, we give a weaker (dimension dependent) approximation ratio, that is nevertheless still tight to characterize the strong converse exponent of entanglement-assisted channel coding [Li and Yao, IEEE Tran. Inf. Theory (2024)]. Our derivations leverage ideas from position-based coding, quantum decoupling theorems, the matrix Chernoff inequality, and input flattening techniques.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"115 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-10-06-1877\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-10-06-1877","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Quantum channel coding: Approximation algorithms and strong converse exponents
We study relaxations of entanglement-assisted quantum channel coding and establish that non-signaling assistance and a natural semi-definite programming relaxation — termed meta-converse — are equivalent in terms of success probabilities. We then present a rounding procedure that transforms any non-signaling-assisted strategy into an entanglement-assisted one and prove an approximation ratio of $(1 – e^{-1})$ in success probabilities for the special case of measurement channels. For fully quantum channels, we give a weaker (dimension dependent) approximation ratio, that is nevertheless still tight to characterize the strong converse exponent of entanglement-assisted channel coding [Li and Yao, IEEE Tran. Inf. Theory (2024)]. Our derivations leverage ideas from position-based coding, quantum decoupling theorems, the matrix Chernoff inequality, and input flattening techniques.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.