电压和ph驱动下CO2电还原铜中多路径C-C耦合的演化

IF 7.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chengyi Zhang, Ziyun Wang
{"title":"电压和ph驱动下CO2电还原铜中多路径C-C耦合的演化","authors":"Chengyi Zhang, Ziyun Wang","doi":"10.1039/d5sc05367f","DOIUrl":null,"url":null,"abstract":"Reducing CO2 into high-energy-density multi-carbon products is critical for addressing climate and energy challenges, with copper being the only metal capable of catalyzing this transformation. However, the fundamental mechanisms of C-C coupling on copper surfaces remain elusive. Previous models have primarily focused on *OC-CO and *OC-COH coupling steps, lacking the dynamic and comprehensive perspective towards the whole system. Addressing this gap, our microkinetic modeling systematically investigates how environmental factors modulate multi-pathway C-C coupling mechanisms. We demonstrate that voltage and pH do not simply enhance a single coupling step but dynamically regulate the accessibility and competition among multiple coupling routes, consistent with previous experimental research. These findings establish a more comprehensive understanding of C-C coupling under realistic electrochemical conditions, offering new guidance for the rational design and optimization of copper-based catalysts for sustainable multi-carbon product synthesis.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"28 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Voltage- and pH-Driven Evolution of Multi-Pathway C-C Coupling in CO2 Electroreduction on Copper\",\"authors\":\"Chengyi Zhang, Ziyun Wang\",\"doi\":\"10.1039/d5sc05367f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reducing CO2 into high-energy-density multi-carbon products is critical for addressing climate and energy challenges, with copper being the only metal capable of catalyzing this transformation. However, the fundamental mechanisms of C-C coupling on copper surfaces remain elusive. Previous models have primarily focused on *OC-CO and *OC-COH coupling steps, lacking the dynamic and comprehensive perspective towards the whole system. Addressing this gap, our microkinetic modeling systematically investigates how environmental factors modulate multi-pathway C-C coupling mechanisms. We demonstrate that voltage and pH do not simply enhance a single coupling step but dynamically regulate the accessibility and competition among multiple coupling routes, consistent with previous experimental research. These findings establish a more comprehensive understanding of C-C coupling under realistic electrochemical conditions, offering new guidance for the rational design and optimization of copper-based catalysts for sustainable multi-carbon product synthesis.\",\"PeriodicalId\":9909,\"journal\":{\"name\":\"Chemical Science\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5sc05367f\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sc05367f","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

将二氧化碳转化为高能量密度的多碳产品对于应对气候和能源挑战至关重要,而铜是唯一能够催化这一转变的金属。然而,铜表面C-C耦合的基本机制仍然是未知的。以往的模型主要关注*OC-CO和*OC-COH耦合步骤,缺乏对整个系统的动态和全面的视角。为了填补这一空白,我们的微动力学模型系统地研究了环境因素如何调节多途径C-C耦合机制。结果表明,电压和pH值不仅增强了单个耦合步骤,而且动态调节了多个耦合路径之间的可达性和竞争,这与先前的实验研究一致。这些发现使我们对现实电化学条件下的C-C偶联反应有了更全面的认识,为合理设计和优化铜基催化剂用于可持续合成多碳产物提供了新的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Voltage- and pH-Driven Evolution of Multi-Pathway C-C Coupling in CO2 Electroreduction on Copper
Reducing CO2 into high-energy-density multi-carbon products is critical for addressing climate and energy challenges, with copper being the only metal capable of catalyzing this transformation. However, the fundamental mechanisms of C-C coupling on copper surfaces remain elusive. Previous models have primarily focused on *OC-CO and *OC-COH coupling steps, lacking the dynamic and comprehensive perspective towards the whole system. Addressing this gap, our microkinetic modeling systematically investigates how environmental factors modulate multi-pathway C-C coupling mechanisms. We demonstrate that voltage and pH do not simply enhance a single coupling step but dynamically regulate the accessibility and competition among multiple coupling routes, consistent with previous experimental research. These findings establish a more comprehensive understanding of C-C coupling under realistic electrochemical conditions, offering new guidance for the rational design and optimization of copper-based catalysts for sustainable multi-carbon product synthesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Science
Chemical Science CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
4.80%
发文量
1352
审稿时长
2.1 months
期刊介绍: Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信