具有拉曼诱导自旋-轨道耦合的里德堡修饰玻色-爱因斯坦凝聚中的手性超固体和耗散时间晶体

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Xianghua Su, Xiping Fu, Yang He, Ying Shang, Kaiyuan Ji, Linghua Wen
{"title":"具有拉曼诱导自旋-轨道耦合的里德堡修饰玻色-爱因斯坦凝聚中的手性超固体和耗散时间晶体","authors":"Xianghua Su,&nbsp;Xiping Fu,&nbsp;Yang He,&nbsp;Ying Shang,&nbsp;Kaiyuan Ji,&nbsp;Linghua Wen","doi":"10.1016/j.chaos.2025.117353","DOIUrl":null,"url":null,"abstract":"<div><div>Spin–orbit coupling (SOC) is one of the crucial factors that affect the chiral symmetry of matter by causing the spatial symmetry breaking of the system. We find that Raman-induced SOC can induce a chiral supersolid phase with a helical antiskyrmion lattice in balanced Rydberg-dressed two-component Bose–Einstein condensates (BECs) in a harmonic trap by modulating the Raman coupling strength. This is in stark contrast to the mirror symmetric supersolid phase containing skyrmion–antiskyrmion lattice pair for the case of Rashba SOC. Two ground-state phase diagrams are presented as a function of the Rydberg interaction and the Raman-induced SOC. It is shown that the interplay among Raman-induced SOC, Rydberg interactions, and nonlinear contact interactions favors rich ground-state structures, including half-quantum vortex phase, stripe supersolid phase, toroidal stripe phase with a central Anderson–Toulouse coreless vortex, checkerboard supersolid phase, mirror symmetric supersolid phase, chiral supersolid phase and standing-wave supersolid phase. In addition, the effects of rotation and in-plane quadrupole magnetic field on the ground state of the system are analyzed. In these two cases, the chiral supersolid phase is broken and the ground state tends to form a miscible phase. Furthermore, we demonstrate that when the initial state is a chiral supersolid phase the rotating harmonic trapped system sustains dissipative continuous time crystal by studying the rotational dynamic behaviors of the system.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"201 ","pages":"Article 117353"},"PeriodicalIF":5.6000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chiral supersolid and dissipative time crystal in Rydberg-dressed Bose–Einstein condensates with Raman-induced spin–orbit coupling\",\"authors\":\"Xianghua Su,&nbsp;Xiping Fu,&nbsp;Yang He,&nbsp;Ying Shang,&nbsp;Kaiyuan Ji,&nbsp;Linghua Wen\",\"doi\":\"10.1016/j.chaos.2025.117353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Spin–orbit coupling (SOC) is one of the crucial factors that affect the chiral symmetry of matter by causing the spatial symmetry breaking of the system. We find that Raman-induced SOC can induce a chiral supersolid phase with a helical antiskyrmion lattice in balanced Rydberg-dressed two-component Bose–Einstein condensates (BECs) in a harmonic trap by modulating the Raman coupling strength. This is in stark contrast to the mirror symmetric supersolid phase containing skyrmion–antiskyrmion lattice pair for the case of Rashba SOC. Two ground-state phase diagrams are presented as a function of the Rydberg interaction and the Raman-induced SOC. It is shown that the interplay among Raman-induced SOC, Rydberg interactions, and nonlinear contact interactions favors rich ground-state structures, including half-quantum vortex phase, stripe supersolid phase, toroidal stripe phase with a central Anderson–Toulouse coreless vortex, checkerboard supersolid phase, mirror symmetric supersolid phase, chiral supersolid phase and standing-wave supersolid phase. In addition, the effects of rotation and in-plane quadrupole magnetic field on the ground state of the system are analyzed. In these two cases, the chiral supersolid phase is broken and the ground state tends to form a miscible phase. Furthermore, we demonstrate that when the initial state is a chiral supersolid phase the rotating harmonic trapped system sustains dissipative continuous time crystal by studying the rotational dynamic behaviors of the system.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"201 \",\"pages\":\"Article 117353\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925013669\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925013669","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

自旋轨道耦合(SOC)是影响物质手性对称性的关键因素之一,它会引起体系的空间对称性破缺。我们发现拉曼诱导的SOC可以通过调节拉曼耦合强度,在谐波阱中在平衡的里德堡包覆双组分玻色-爱因斯坦凝聚体(BECs)中诱导出具有螺旋反粒子晶格的手性超固相。这与Rashba SOC中含有skyrμ - antiskyrμ晶格对的镜像对称超固相形成鲜明对比。给出了两个基态相图作为Rydberg相互作用和拉曼诱导SOC的函数。结果表明,拉曼诱导的SOC、Rydberg相互作用和非线性接触相互作用的相互作用有利于丰富的基态结构,包括半量子涡旋相、条纹超固相、以Anderson-Toulouse为中心的环形条纹相、棋盘状超固相、镜像对称超固相、手性超固相和驻波超固相。此外,还分析了旋转和平面内四极磁场对系统基态的影响。在这两种情况下,手性超固相被破坏,基态倾向于形成混相。此外,我们通过研究系统的旋转动力学行为,证明了当初始态为手性超固相时,旋转谐波捕获系统维持耗散连续时间晶体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chiral supersolid and dissipative time crystal in Rydberg-dressed Bose–Einstein condensates with Raman-induced spin–orbit coupling
Spin–orbit coupling (SOC) is one of the crucial factors that affect the chiral symmetry of matter by causing the spatial symmetry breaking of the system. We find that Raman-induced SOC can induce a chiral supersolid phase with a helical antiskyrmion lattice in balanced Rydberg-dressed two-component Bose–Einstein condensates (BECs) in a harmonic trap by modulating the Raman coupling strength. This is in stark contrast to the mirror symmetric supersolid phase containing skyrmion–antiskyrmion lattice pair for the case of Rashba SOC. Two ground-state phase diagrams are presented as a function of the Rydberg interaction and the Raman-induced SOC. It is shown that the interplay among Raman-induced SOC, Rydberg interactions, and nonlinear contact interactions favors rich ground-state structures, including half-quantum vortex phase, stripe supersolid phase, toroidal stripe phase with a central Anderson–Toulouse coreless vortex, checkerboard supersolid phase, mirror symmetric supersolid phase, chiral supersolid phase and standing-wave supersolid phase. In addition, the effects of rotation and in-plane quadrupole magnetic field on the ground state of the system are analyzed. In these two cases, the chiral supersolid phase is broken and the ground state tends to form a miscible phase. Furthermore, we demonstrate that when the initial state is a chiral supersolid phase the rotating harmonic trapped system sustains dissipative continuous time crystal by studying the rotational dynamic behaviors of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信