上位产生的潜在综合关联

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Hai-Jun Liu, Jingxian Fu, Shuhua Xu, Magnus Nordborg
{"title":"上位产生的潜在综合关联","authors":"Hai-Jun Liu, Jingxian Fu, Shuhua Xu, Magnus Nordborg","doi":"10.1186/s13059-025-03807-z","DOIUrl":null,"url":null,"abstract":"The prevalence of synthetic associations in GWAS, where non-causal variants become significant by tagging multiple undetected causal variants and not necessarily in strong linkage disequilibrium with any single one, remains unexplored. We introduce a novel machine-learning approach using only genotype data to infer such associations in human GWAS. Our analysis reveals that 3–5% of GWAS Catalog peaks may represent potential synthetic associations, often arising from epistatic interactions between common variants rather than multiple rare variants acting independently. Our findings highlight the need for multi-locus models and emphasize careful GWAS interpretation and follow-up analyses like fine-mapping and trait prediction.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"46 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential synthetic associations created by epistasis\",\"authors\":\"Hai-Jun Liu, Jingxian Fu, Shuhua Xu, Magnus Nordborg\",\"doi\":\"10.1186/s13059-025-03807-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prevalence of synthetic associations in GWAS, where non-causal variants become significant by tagging multiple undetected causal variants and not necessarily in strong linkage disequilibrium with any single one, remains unexplored. We introduce a novel machine-learning approach using only genotype data to infer such associations in human GWAS. Our analysis reveals that 3–5% of GWAS Catalog peaks may represent potential synthetic associations, often arising from epistatic interactions between common variants rather than multiple rare variants acting independently. Our findings highlight the need for multi-locus models and emphasize careful GWAS interpretation and follow-up analyses like fine-mapping and trait prediction.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03807-z\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03807-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在GWAS中,非因果变异通过标记多个未检测到的因果变异而变得重要,而不一定与任何单一的因果变异存在强烈的连锁不平衡,这种综合关联的普遍性仍未得到探索。我们介绍了一种新的机器学习方法,仅使用基因型数据来推断人类GWAS中的这种关联。我们的分析表明,3-5%的GWAS目录峰可能代表潜在的合成关联,通常是由常见变异之间的上位相互作用引起的,而不是多个独立作用的罕见变异。我们的研究结果强调了多位点模型的必要性,并强调了仔细的GWAS解释和后续分析,如精细定位和性状预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Potential synthetic associations created by epistasis
The prevalence of synthetic associations in GWAS, where non-causal variants become significant by tagging multiple undetected causal variants and not necessarily in strong linkage disequilibrium with any single one, remains unexplored. We introduce a novel machine-learning approach using only genotype data to infer such associations in human GWAS. Our analysis reveals that 3–5% of GWAS Catalog peaks may represent potential synthetic associations, often arising from epistatic interactions between common variants rather than multiple rare variants acting independently. Our findings highlight the need for multi-locus models and emphasize careful GWAS interpretation and follow-up analyses like fine-mapping and trait prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信