利用辅助信息增强高维数据流故障诊断中的操作决策

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Zhihan Zhang, Wendong Li, Min Xie, Dongdong Xiang
{"title":"利用辅助信息增强高维数据流故障诊断中的操作决策","authors":"Zhihan Zhang, Wendong Li, Min Xie, Dongdong Xiang","doi":"10.1016/j.ejor.2025.09.022","DOIUrl":null,"url":null,"abstract":"Modern engineering systems, from advanced manufacturing processes to sophisticated electronic devices, generate high-dimensional data streams (HDS) that demand efficient operational strategies for quality management. While real-time anomaly detection is crucial, the importance of accurate post-signal fault diagnosis for root cause analysis has grown substantially. Current diagnostic methods often focus on isolated sequences of HDS, missing opportunities to leverage auxiliary information that can enhance decision-making. This paper introduces a novel framework to improve large-scale fault diagnosis in HDS environments, integrating auxiliary sequences within a multi-sequence multiple testing framework. Utilizing a Cartesian hidden Markov model, we develop a generalized local index of significance (GLIS) to assess the abnormality likelihood across data streams. Based on the GLIS, our proposed data-driven diagnostic procedure effectively harnesses auxiliary information, aiming to optimize operational decisions by minimizing the expected number of false positives in the primary sequence while maintaining control over the missed discovery rate. The asymptotic validity and optimality of this approach ensure its robustness in practical settings. We validate the efficacy of our method through comprehensive simulations and a real-world case study, demonstrating its potential to support more accurate and informed operational decisions.","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"14 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing operational decision-making in fault diagnosis for high-dimensional data streams with auxiliary information\",\"authors\":\"Zhihan Zhang, Wendong Li, Min Xie, Dongdong Xiang\",\"doi\":\"10.1016/j.ejor.2025.09.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern engineering systems, from advanced manufacturing processes to sophisticated electronic devices, generate high-dimensional data streams (HDS) that demand efficient operational strategies for quality management. While real-time anomaly detection is crucial, the importance of accurate post-signal fault diagnosis for root cause analysis has grown substantially. Current diagnostic methods often focus on isolated sequences of HDS, missing opportunities to leverage auxiliary information that can enhance decision-making. This paper introduces a novel framework to improve large-scale fault diagnosis in HDS environments, integrating auxiliary sequences within a multi-sequence multiple testing framework. Utilizing a Cartesian hidden Markov model, we develop a generalized local index of significance (GLIS) to assess the abnormality likelihood across data streams. Based on the GLIS, our proposed data-driven diagnostic procedure effectively harnesses auxiliary information, aiming to optimize operational decisions by minimizing the expected number of false positives in the primary sequence while maintaining control over the missed discovery rate. The asymptotic validity and optimality of this approach ensure its robustness in practical settings. We validate the efficacy of our method through comprehensive simulations and a real-world case study, demonstrating its potential to support more accurate and informed operational decisions.\",\"PeriodicalId\":55161,\"journal\":{\"name\":\"European Journal of Operational Research\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Operational Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ejor.2025.09.022\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1016/j.ejor.2025.09.022","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

现代工程系统,从先进的制造工艺到复杂的电子设备,产生高维数据流(HDS),这需要有效的质量管理操作策略。虽然实时异常检测至关重要,但准确的信号后故障诊断对于根本原因分析的重要性已经大大增加。目前的诊断方法通常侧重于分离的HDS序列,错失了利用辅助信息来增强决策的机会。本文介绍了一种将辅助序列集成到多序列多测试框架中的新框架,以提高HDS环境下的大规模故障诊断能力。利用笛卡尔隐马尔可夫模型,我们建立了一个广义局部显著性指数(GLIS)来评估数据流异常可能性。基于GLIS,我们提出的数据驱动诊断程序有效地利用辅助信息,旨在通过最小化主序列中误报的预期数量来优化操作决策,同时保持对遗漏发现率的控制。该方法的渐近有效性和最优性保证了其在实际环境中的鲁棒性。我们通过综合模拟和实际案例研究验证了该方法的有效性,证明了其支持更准确、更明智的运营决策的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing operational decision-making in fault diagnosis for high-dimensional data streams with auxiliary information
Modern engineering systems, from advanced manufacturing processes to sophisticated electronic devices, generate high-dimensional data streams (HDS) that demand efficient operational strategies for quality management. While real-time anomaly detection is crucial, the importance of accurate post-signal fault diagnosis for root cause analysis has grown substantially. Current diagnostic methods often focus on isolated sequences of HDS, missing opportunities to leverage auxiliary information that can enhance decision-making. This paper introduces a novel framework to improve large-scale fault diagnosis in HDS environments, integrating auxiliary sequences within a multi-sequence multiple testing framework. Utilizing a Cartesian hidden Markov model, we develop a generalized local index of significance (GLIS) to assess the abnormality likelihood across data streams. Based on the GLIS, our proposed data-driven diagnostic procedure effectively harnesses auxiliary information, aiming to optimize operational decisions by minimizing the expected number of false positives in the primary sequence while maintaining control over the missed discovery rate. The asymptotic validity and optimality of this approach ensure its robustness in practical settings. We validate the efficacy of our method through comprehensive simulations and a real-world case study, demonstrating its potential to support more accurate and informed operational decisions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信