基于机器学习的柔性薄膜太阳能电池热应力缓冲

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Jiahao Yuan, Chunhao Shi, Zhichao Huang, Yang Gao, Min Wu, Min Qian, Yabin Yan
{"title":"基于机器学习的柔性薄膜太阳能电池热应力缓冲","authors":"Jiahao Yuan, Chunhao Shi, Zhichao Huang, Yang Gao, Min Wu, Min Qian, Yabin Yan","doi":"10.1002/adts.202501554","DOIUrl":null,"url":null,"abstract":"This study primarily focuses on the design of a thermal buffer layer for flexible GaAs‐based thin‐film solar cells. By employing Abaqus thermodynamic cell array modeling, the investigation prioritizes the thermal Mises stress between the encapsulation layer and GaAs cell layer, where it is most critical. Through computational analysis of the thermal buffer layer, key parameters including the coefficients of thermal expansion (CTE) of the buffer material, the elastic modulus (E), and buffer layer thickness are identified as the principal factors effectively influencing thermal stress mitigation. Furthermore, a double gradient buffer layer is implemented to alleviate thermal mismatch, supported by extreme gradient boosting and an interpretive algorithm to determine CTE value of the second buffer layer as the most dominant factor. The thermal stress reduction predicted by the genetic algorithm (GA) is validated against the pre‐established simulation model in Abaqus. Subsequently, the material database is employed to identify similar optimized material combinations for investigation at other temperature points. This research provides valuable insights for the design of thermal buffer layers for solar cells.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"257 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal Stress Buffering of Flexible Thin‐Film Solar Cells Based on Machine Learning\",\"authors\":\"Jiahao Yuan, Chunhao Shi, Zhichao Huang, Yang Gao, Min Wu, Min Qian, Yabin Yan\",\"doi\":\"10.1002/adts.202501554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study primarily focuses on the design of a thermal buffer layer for flexible GaAs‐based thin‐film solar cells. By employing Abaqus thermodynamic cell array modeling, the investigation prioritizes the thermal Mises stress between the encapsulation layer and GaAs cell layer, where it is most critical. Through computational analysis of the thermal buffer layer, key parameters including the coefficients of thermal expansion (CTE) of the buffer material, the elastic modulus (E), and buffer layer thickness are identified as the principal factors effectively influencing thermal stress mitigation. Furthermore, a double gradient buffer layer is implemented to alleviate thermal mismatch, supported by extreme gradient boosting and an interpretive algorithm to determine CTE value of the second buffer layer as the most dominant factor. The thermal stress reduction predicted by the genetic algorithm (GA) is validated against the pre‐established simulation model in Abaqus. Subsequently, the material database is employed to identify similar optimized material combinations for investigation at other temperature points. This research provides valuable insights for the design of thermal buffer layers for solar cells.\",\"PeriodicalId\":7219,\"journal\":{\"name\":\"Advanced Theory and Simulations\",\"volume\":\"257 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adts.202501554\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202501554","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究主要集中于柔性砷化镓薄膜太阳能电池的热缓冲层的设计。通过使用Abaqus热力学电池阵列建模,研究优先考虑封装层和砷化镓电池层之间的热米塞斯应力,这是最关键的。通过对热缓冲层的计算分析,确定了缓冲材料的热膨胀系数(CTE)、弹性模量(E)和缓冲层厚度等关键参数是有效影响热应力缓解的主要因素。此外,实现了双梯度缓冲层以缓解热失配,并通过极端梯度增强和解释算法来确定第二层缓冲层的CTE值是最主要的因素。在Abaqus中对遗传算法(GA)预测的热应力降低进行了验证。随后,材料数据库被用来识别类似的优化材料组合,以在其他温度点进行研究。该研究为太阳能电池热缓冲层的设计提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal Stress Buffering of Flexible Thin‐Film Solar Cells Based on Machine Learning
This study primarily focuses on the design of a thermal buffer layer for flexible GaAs‐based thin‐film solar cells. By employing Abaqus thermodynamic cell array modeling, the investigation prioritizes the thermal Mises stress between the encapsulation layer and GaAs cell layer, where it is most critical. Through computational analysis of the thermal buffer layer, key parameters including the coefficients of thermal expansion (CTE) of the buffer material, the elastic modulus (E), and buffer layer thickness are identified as the principal factors effectively influencing thermal stress mitigation. Furthermore, a double gradient buffer layer is implemented to alleviate thermal mismatch, supported by extreme gradient boosting and an interpretive algorithm to determine CTE value of the second buffer layer as the most dominant factor. The thermal stress reduction predicted by the genetic algorithm (GA) is validated against the pre‐established simulation model in Abaqus. Subsequently, the material database is employed to identify similar optimized material combinations for investigation at other temperature points. This research provides valuable insights for the design of thermal buffer layers for solar cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信