安达曼-尼科巴俯冲带地震震级均匀化回归模型的探索

IF 0.9 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS
Ashis Kumar Bala, Ujjwal Saha
{"title":"安达曼-尼科巴俯冲带地震震级均匀化回归模型的探索","authors":"Ashis Kumar Bala,&nbsp;Ujjwal Saha","doi":"10.1134/S0742046325700228","DOIUrl":null,"url":null,"abstract":"<p>The earthquake size is quantified by seismic centers all over the world in several magnitude scales, which requires to be unified into a preferred scale to infer flawless comparison of earthquake size. The problem has been addressed by numerous researchers and converted earthquake magnitudes mostly into moment magnitude from different magnitude scales as relation among them are overdue. In this study, Simple Linear Regression (SLR), Orthogonal Regression (OR), Gaussian Process Regression (GPR), and Support Vector Regression (SVR) have been employed to find out the best method to correlate different earthquake magnitude scales. The Andaman–Nicobar–Subduction Zone, a part of the Sumatra–Andaman–Subduction–Zone which is capable of producing earthquakes of great magnitudes, has been selected for this study. For this study, earthquake data has been extracted from the International Seismological Centre (ISC) earthquake catalog. The study indicates that moment magnitude can be predicted more accurately using multiple scales than single scale. It has also been found that, the GPR model predicts higher earthquake magnitude values better than other methods. Hence, for conversion of earthquake magnitude into standard scale, use of multiple scales and the GPR method can be beneficial.</p>","PeriodicalId":56112,"journal":{"name":"Journal of Volcanology and Seismology","volume":"19 5","pages":"490 - 507"},"PeriodicalIF":0.9000,"publicationDate":"2025-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploration of Regression Models for Homogenization of the Earthquake Magnitude Scales to Study Earthquakes in the Andaman-Nicobar Subduction Zone\",\"authors\":\"Ashis Kumar Bala,&nbsp;Ujjwal Saha\",\"doi\":\"10.1134/S0742046325700228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The earthquake size is quantified by seismic centers all over the world in several magnitude scales, which requires to be unified into a preferred scale to infer flawless comparison of earthquake size. The problem has been addressed by numerous researchers and converted earthquake magnitudes mostly into moment magnitude from different magnitude scales as relation among them are overdue. In this study, Simple Linear Regression (SLR), Orthogonal Regression (OR), Gaussian Process Regression (GPR), and Support Vector Regression (SVR) have been employed to find out the best method to correlate different earthquake magnitude scales. The Andaman–Nicobar–Subduction Zone, a part of the Sumatra–Andaman–Subduction–Zone which is capable of producing earthquakes of great magnitudes, has been selected for this study. For this study, earthquake data has been extracted from the International Seismological Centre (ISC) earthquake catalog. The study indicates that moment magnitude can be predicted more accurately using multiple scales than single scale. It has also been found that, the GPR model predicts higher earthquake magnitude values better than other methods. Hence, for conversion of earthquake magnitude into standard scale, use of multiple scales and the GPR method can be beneficial.</p>\",\"PeriodicalId\":56112,\"journal\":{\"name\":\"Journal of Volcanology and Seismology\",\"volume\":\"19 5\",\"pages\":\"490 - 507\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Volcanology and Seismology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0742046325700228\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Volcanology and Seismology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0742046325700228","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

地震震级是由世界各地的地震中心按几个震级进行量化的,需要统一成一个优选的震级,以推断出地震震级的完美比较。由于地震震级与矩震级之间的关系尚不成熟,许多学者对地震震级的转换多为不同震级的矩震级。本研究采用简单线性回归(SLR)、正交回归(OR)、高斯过程回归(GPR)和支持向量回归(SVR)等方法,寻找不同震级相关的最佳方法。安达曼-尼科巴俯冲带是苏门答腊-安达曼俯冲带的一部分,能够产生大震级的地震,被选为本研究的对象。在这项研究中,地震数据是从国际地震中心(ISC)地震目录中提取的。研究表明,多尺度的矩量预测比单尺度的矩量预测更准确。地质探地雷达模型对高震级地震的预测效果优于其他方法。因此,在将地震震级转换为标准尺度时,使用多尺度和探地雷达方法是有益的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exploration of Regression Models for Homogenization of the Earthquake Magnitude Scales to Study Earthquakes in the Andaman-Nicobar Subduction Zone

Exploration of Regression Models for Homogenization of the Earthquake Magnitude Scales to Study Earthquakes in the Andaman-Nicobar Subduction Zone

The earthquake size is quantified by seismic centers all over the world in several magnitude scales, which requires to be unified into a preferred scale to infer flawless comparison of earthquake size. The problem has been addressed by numerous researchers and converted earthquake magnitudes mostly into moment magnitude from different magnitude scales as relation among them are overdue. In this study, Simple Linear Regression (SLR), Orthogonal Regression (OR), Gaussian Process Regression (GPR), and Support Vector Regression (SVR) have been employed to find out the best method to correlate different earthquake magnitude scales. The Andaman–Nicobar–Subduction Zone, a part of the Sumatra–Andaman–Subduction–Zone which is capable of producing earthquakes of great magnitudes, has been selected for this study. For this study, earthquake data has been extracted from the International Seismological Centre (ISC) earthquake catalog. The study indicates that moment magnitude can be predicted more accurately using multiple scales than single scale. It has also been found that, the GPR model predicts higher earthquake magnitude values better than other methods. Hence, for conversion of earthquake magnitude into standard scale, use of multiple scales and the GPR method can be beneficial.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Volcanology and Seismology
Journal of Volcanology and Seismology 地学-地球化学与地球物理
CiteScore
1.50
自引率
28.60%
发文量
27
审稿时长
>12 weeks
期刊介绍: Journal of Volcanology and Seismology publishes theoretical and experimental studies, communications, and reports on volcanic, seismic, geodynamic, and magmatic processes occurring in the areas of island arcs and other active regions of the Earth. In particular, the journal looks at present-day land and submarine volcanic activity; Neogene–Quaternary volcanism; mechanisms of plutonic activity; the geochemistry of volcanic and postvolcanic processes; geothermal systems in volcanic regions; and seismological monitoring. In addition, the journal surveys earthquakes, volcanic eruptions, and techniques for predicting them.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信