利用边组稀疏主成分分析方法集成工艺数据和拓扑信息,实现工艺分析

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yi Liu , Po-Wei Yeh , Mingwei Jia , Po-Chun Mao , Yuan Yao
{"title":"利用边组稀疏主成分分析方法集成工艺数据和拓扑信息,实现工艺分析","authors":"Yi Liu ,&nbsp;Po-Wei Yeh ,&nbsp;Mingwei Jia ,&nbsp;Po-Chun Mao ,&nbsp;Yuan Yao","doi":"10.1016/j.compchemeng.2025.109419","DOIUrl":null,"url":null,"abstract":"<div><div>Despite rapid advancements in deep learning, traditional methods like principal component analysis (PCA) remain indispensable in chemical process analysis due to their strong mathematical foundations and powerful visualization capabilities, which uncover variable correlations and reveal process variations. This study introduces edge-group sparse PCA (ESPCA) for process analytics, integrating process topology while enforcing sparsity on loading vectors to enhance interpretability. A systematic application procedure is demonstrated through illustrative examples. In these applications, ESPCA proves particularly effective in identifying key process units and variables associated with faults or disturbances, providing a solid foundation for root cause analysis. Visualization tools play a crucial role in integrating available process knowledge, facilitating the interpretation of results, and enabling engineers to derive conclusions in a clear and intuitive manner. Additionally, statistical causality analysis methods like transfer entropy can be used alongside ESPCA to trace propagation paths and pinpoint root causes of process anomalies.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"204 ","pages":"Article 109419"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating process data and topology information through edge-group sparse principal component analysis for process analytics\",\"authors\":\"Yi Liu ,&nbsp;Po-Wei Yeh ,&nbsp;Mingwei Jia ,&nbsp;Po-Chun Mao ,&nbsp;Yuan Yao\",\"doi\":\"10.1016/j.compchemeng.2025.109419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Despite rapid advancements in deep learning, traditional methods like principal component analysis (PCA) remain indispensable in chemical process analysis due to their strong mathematical foundations and powerful visualization capabilities, which uncover variable correlations and reveal process variations. This study introduces edge-group sparse PCA (ESPCA) for process analytics, integrating process topology while enforcing sparsity on loading vectors to enhance interpretability. A systematic application procedure is demonstrated through illustrative examples. In these applications, ESPCA proves particularly effective in identifying key process units and variables associated with faults or disturbances, providing a solid foundation for root cause analysis. Visualization tools play a crucial role in integrating available process knowledge, facilitating the interpretation of results, and enabling engineers to derive conclusions in a clear and intuitive manner. Additionally, statistical causality analysis methods like transfer entropy can be used alongside ESPCA to trace propagation paths and pinpoint root causes of process anomalies.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"204 \",\"pages\":\"Article 109419\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135425004223\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425004223","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

尽管深度学习发展迅速,但传统方法如主成分分析(PCA)在化学过程分析中仍然不可或缺,因为它们具有强大的数学基础和强大的可视化能力,可以揭示变量相关性和过程变化。本研究引入边缘群稀疏PCA (ESPCA)进行过程分析,整合过程拓扑,同时加强加载向量的稀疏性以增强可解释性。通过实例说明了系统的应用程序。在这些应用中,ESPCA被证明在识别与故障或干扰相关的关键过程单元和变量方面特别有效,为根本原因分析提供了坚实的基础。可视化工具在集成可用的过程知识、促进对结果的解释以及使工程师能够以清晰和直观的方式得出结论方面起着至关重要的作用。此外,像传递熵这样的统计因果分析方法可以与ESPCA一起使用,以跟踪传播路径并查明过程异常的根本原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating process data and topology information through edge-group sparse principal component analysis for process analytics
Despite rapid advancements in deep learning, traditional methods like principal component analysis (PCA) remain indispensable in chemical process analysis due to their strong mathematical foundations and powerful visualization capabilities, which uncover variable correlations and reveal process variations. This study introduces edge-group sparse PCA (ESPCA) for process analytics, integrating process topology while enforcing sparsity on loading vectors to enhance interpretability. A systematic application procedure is demonstrated through illustrative examples. In these applications, ESPCA proves particularly effective in identifying key process units and variables associated with faults or disturbances, providing a solid foundation for root cause analysis. Visualization tools play a crucial role in integrating available process knowledge, facilitating the interpretation of results, and enabling engineers to derive conclusions in a clear and intuitive manner. Additionally, statistical causality analysis methods like transfer entropy can be used alongside ESPCA to trace propagation paths and pinpoint root causes of process anomalies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信