使用模型分解的强化学习驱动的全厂炼油厂规划

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Zhouchang Li, Runze Lin, Hongye Su, Lei Xie
{"title":"使用模型分解的强化学习驱动的全厂炼油厂规划","authors":"Zhouchang Li,&nbsp;Runze Lin,&nbsp;Hongye Su,&nbsp;Lei Xie","doi":"10.1016/j.compchemeng.2025.109348","DOIUrl":null,"url":null,"abstract":"<div><div>In the era of smart manufacturing and Industry 4.0, the refining industry is evolving towards large-scale integration and flexible production systems. In response to these new demands, this paper presents a novel optimization framework for plant-wide refinery planning, integrating model decomposition with deep reinforcement learning. The approach decomposes the complex large-scale refinery optimization problem into manageable submodels, improving computational efficiency while preserving accuracy. A reinforcement learning-based pricing mechanism is introduced to generate pricing strategies for intermediate products, facilitating better coordination between submodels and enabling rapid responses to market changes. Two industrial case studies, covering both single-period and multi-period refinery planning, demonstrate significant improvements in computational efficiency while ensuring refinery profitability.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"204 ","pages":"Article 109348"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcement learning-driven plant-wide refinery planning using model decomposition\",\"authors\":\"Zhouchang Li,&nbsp;Runze Lin,&nbsp;Hongye Su,&nbsp;Lei Xie\",\"doi\":\"10.1016/j.compchemeng.2025.109348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the era of smart manufacturing and Industry 4.0, the refining industry is evolving towards large-scale integration and flexible production systems. In response to these new demands, this paper presents a novel optimization framework for plant-wide refinery planning, integrating model decomposition with deep reinforcement learning. The approach decomposes the complex large-scale refinery optimization problem into manageable submodels, improving computational efficiency while preserving accuracy. A reinforcement learning-based pricing mechanism is introduced to generate pricing strategies for intermediate products, facilitating better coordination between submodels and enabling rapid responses to market changes. Two industrial case studies, covering both single-period and multi-period refinery planning, demonstrate significant improvements in computational efficiency while ensuring refinery profitability.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"204 \",\"pages\":\"Article 109348\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135425003503\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425003503","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在智能制造和工业4.0时代,炼油行业正朝着大规模集成和柔性生产系统的方向发展。针对这些新的需求,本文提出了一种新的工厂范围内炼油厂规划优化框架,将模型分解与深度强化学习相结合。该方法将复杂的大型炼油厂优化问题分解为可管理的子模型,在保证精度的同时提高了计算效率。引入基于强化学习的定价机制来生成中间产品的定价策略,促进子模型之间更好的协调,并实现对市场变化的快速响应。两个涵盖单周期和多周期炼油厂规划的工业案例研究表明,在确保炼油厂盈利能力的同时,计算效率得到了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reinforcement learning-driven plant-wide refinery planning using model decomposition
In the era of smart manufacturing and Industry 4.0, the refining industry is evolving towards large-scale integration and flexible production systems. In response to these new demands, this paper presents a novel optimization framework for plant-wide refinery planning, integrating model decomposition with deep reinforcement learning. The approach decomposes the complex large-scale refinery optimization problem into manageable submodels, improving computational efficiency while preserving accuracy. A reinforcement learning-based pricing mechanism is introduced to generate pricing strategies for intermediate products, facilitating better coordination between submodels and enabling rapid responses to market changes. Two industrial case studies, covering both single-period and multi-period refinery planning, demonstrate significant improvements in computational efficiency while ensuring refinery profitability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信