具有三五次非线性和奇偶时间对称光学晶格的偶极玻色-爱因斯坦凝聚中的涡旋间隙孤子

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Zhuo Fan , Linjia Wang , Tong Wu, Di Wu, Xia Hu, Wei Peng, Siliu Xu
{"title":"具有三五次非线性和奇偶时间对称光学晶格的偶极玻色-爱因斯坦凝聚中的涡旋间隙孤子","authors":"Zhuo Fan ,&nbsp;Linjia Wang ,&nbsp;Tong Wu,&nbsp;Di Wu,&nbsp;Xia Hu,&nbsp;Wei Peng,&nbsp;Siliu Xu","doi":"10.1016/j.chaos.2025.117279","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we explore two-dimensional (2D) vortex solitons (VSs) in dipolar Bose–Einstein condensates with cubic–quintic nonlinearity and a parity-time (<span><math><mi>PT</mi></math></span>)-symmetric optical lattice. Using numerical methods, we obtain gap soliton solutions and evaluate their topological and dynamical stability. Two types of VSs, ring-shaped and multicore solitons, are discovered with topological charges ranging from <span><math><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow></math></span> to 3. The behavior and stability of VSs are influenced by key parameters, such as the quintic nonlinearity coefficient, dipole–dipole interaction coefficient, and the imaginary/real parts of the <span><math><mi>PT</mi></math></span>-symmetric potential. In particular, the <span><math><mi>PT</mi></math></span>-symmetric potential affects the asymmetric distribution of ring-shaped VSs and the topological intensity distribution of multicore VSs. The stability of VSs is evaluated via temporal evolution. These results improve our understanding of soliton dynamics in non-Hermitian systems and offer insights for topological photonic applications.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"201 ","pages":"Article 117279"},"PeriodicalIF":5.6000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vortex gap solitons in dipolar Bose–Einstein condensates with cubic–quintic nonlinearity and parity-time-symmetric optical lattice\",\"authors\":\"Zhuo Fan ,&nbsp;Linjia Wang ,&nbsp;Tong Wu,&nbsp;Di Wu,&nbsp;Xia Hu,&nbsp;Wei Peng,&nbsp;Siliu Xu\",\"doi\":\"10.1016/j.chaos.2025.117279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we explore two-dimensional (2D) vortex solitons (VSs) in dipolar Bose–Einstein condensates with cubic–quintic nonlinearity and a parity-time (<span><math><mi>PT</mi></math></span>)-symmetric optical lattice. Using numerical methods, we obtain gap soliton solutions and evaluate their topological and dynamical stability. Two types of VSs, ring-shaped and multicore solitons, are discovered with topological charges ranging from <span><math><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow></math></span> to 3. The behavior and stability of VSs are influenced by key parameters, such as the quintic nonlinearity coefficient, dipole–dipole interaction coefficient, and the imaginary/real parts of the <span><math><mi>PT</mi></math></span>-symmetric potential. In particular, the <span><math><mi>PT</mi></math></span>-symmetric potential affects the asymmetric distribution of ring-shaped VSs and the topological intensity distribution of multicore VSs. The stability of VSs is evaluated via temporal evolution. These results improve our understanding of soliton dynamics in non-Hermitian systems and offer insights for topological photonic applications.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"201 \",\"pages\":\"Article 117279\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925012925\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925012925","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们探索了具有三五次非线性和宇称时间(PT)对称光学晶格的偶极玻色-爱因斯坦凝聚中的二维涡旋孤子。利用数值方法得到了间隙孤子的解,并对其拓扑稳定性和动力学稳定性进行了评价。环形孤子和多核孤子这两种类型的孤子被发现,它们的拓扑电荷范围从m=1到3。五次非线性系数、偶极-偶极相互作用系数和pt对称势的虚部/实部等关键参数影响了VSs的行为和稳定性。特别是pt对称电势影响了环形电势的不对称分布和多核电势的拓扑强度分布。通过时间演化来评价系统的稳定性。这些结果提高了我们对非厄米系统孤子动力学的理解,并为拓扑光子的应用提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vortex gap solitons in dipolar Bose–Einstein condensates with cubic–quintic nonlinearity and parity-time-symmetric optical lattice
In this study, we explore two-dimensional (2D) vortex solitons (VSs) in dipolar Bose–Einstein condensates with cubic–quintic nonlinearity and a parity-time (PT)-symmetric optical lattice. Using numerical methods, we obtain gap soliton solutions and evaluate their topological and dynamical stability. Two types of VSs, ring-shaped and multicore solitons, are discovered with topological charges ranging from m=1 to 3. The behavior and stability of VSs are influenced by key parameters, such as the quintic nonlinearity coefficient, dipole–dipole interaction coefficient, and the imaginary/real parts of the PT-symmetric potential. In particular, the PT-symmetric potential affects the asymmetric distribution of ring-shaped VSs and the topological intensity distribution of multicore VSs. The stability of VSs is evaluated via temporal evolution. These results improve our understanding of soliton dynamics in non-Hermitian systems and offer insights for topological photonic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信