回波状态网络混沌边缘的表征

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Yufei Gao
{"title":"回波状态网络混沌边缘的表征","authors":"Yufei Gao","doi":"10.1016/j.chaos.2025.117333","DOIUrl":null,"url":null,"abstract":"<div><div>Chaos theory examines how simple deterministic rules can produce unpredictable yet highly structured dynamics due to their extreme sensitivity to initial conditions. In reservoir computing, and particularly in Echo State Networks (ESNs), operating at the so-called “edge of chaos” has been empirically shown to maximize memory capacity and computational richness; however, a rigorous characterization of this critical regime has remained elusive. Here, we address this gap by combining propagation-of-chaos Dynamical Mean-Field Theory (DMFT) with infinite-dimensional ergodic and multiplicative-ergodic theorems and sharp spectral-gap and minorization estimates to establish, for continuous-time ESNs, the almost-sure existence of a unique critical gain <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> at which the maximal Lyapunov exponent <span><math><mrow><mi>Λ</mi><mrow><mo>(</mo><mi>g</mi><mo>)</mo></mrow></mrow></math></span> crosses zero. We derive an exact one-dimensional DMFT formula <span><math><mrow><mi>Λ</mi><mrow><mo>(</mo><mi>g</mi><mo>)</mo></mrow><mo>=</mo><mo>ln</mo><mi>g</mi><mo>+</mo><msub><mrow><mi>E</mi></mrow><mrow><msub><mrow><mover><mrow><mi>μ</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow><mrow><mi>g</mi></mrow></msub></mrow></msub><mrow><mo>[</mo><mo>ln</mo><mrow><mo>|</mo><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>]</mo></mrow></mrow></math></span>, prove that it admits a single zero, and validate <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> empirically via six independent diagnostics—spectral scaling, long-range correlations, fractal attractor dimension, phase-space geometry, invariant-measure statistics, and spatio-temporal coherence. Our results provide a theoretical foundation for edge-of-chaos ESNs, illuminating why marginally stable reservoirs yield optimal performance and laying the theoretical groundwork for integrating chaotic dynamics into modern machine learning architectures.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"201 ","pages":"Article 117333"},"PeriodicalIF":5.6000,"publicationDate":"2025-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing the edge of chaos in echo state networks\",\"authors\":\"Yufei Gao\",\"doi\":\"10.1016/j.chaos.2025.117333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Chaos theory examines how simple deterministic rules can produce unpredictable yet highly structured dynamics due to their extreme sensitivity to initial conditions. In reservoir computing, and particularly in Echo State Networks (ESNs), operating at the so-called “edge of chaos” has been empirically shown to maximize memory capacity and computational richness; however, a rigorous characterization of this critical regime has remained elusive. Here, we address this gap by combining propagation-of-chaos Dynamical Mean-Field Theory (DMFT) with infinite-dimensional ergodic and multiplicative-ergodic theorems and sharp spectral-gap and minorization estimates to establish, for continuous-time ESNs, the almost-sure existence of a unique critical gain <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> at which the maximal Lyapunov exponent <span><math><mrow><mi>Λ</mi><mrow><mo>(</mo><mi>g</mi><mo>)</mo></mrow></mrow></math></span> crosses zero. We derive an exact one-dimensional DMFT formula <span><math><mrow><mi>Λ</mi><mrow><mo>(</mo><mi>g</mi><mo>)</mo></mrow><mo>=</mo><mo>ln</mo><mi>g</mi><mo>+</mo><msub><mrow><mi>E</mi></mrow><mrow><msub><mrow><mover><mrow><mi>μ</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow><mrow><mi>g</mi></mrow></msub></mrow></msub><mrow><mo>[</mo><mo>ln</mo><mrow><mo>|</mo><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>]</mo></mrow></mrow></math></span>, prove that it admits a single zero, and validate <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> empirically via six independent diagnostics—spectral scaling, long-range correlations, fractal attractor dimension, phase-space geometry, invariant-measure statistics, and spatio-temporal coherence. Our results provide a theoretical foundation for edge-of-chaos ESNs, illuminating why marginally stable reservoirs yield optimal performance and laying the theoretical groundwork for integrating chaotic dynamics into modern machine learning architectures.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"201 \",\"pages\":\"Article 117333\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925013463\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925013463","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

混沌理论研究了简单的确定性规则如何由于对初始条件的极端敏感性而产生不可预测但高度结构化的动力学。在油藏计算中,特别是在回声状态网络(ESNs)中,在所谓的“混沌边缘”操作已被经验证明可以最大化内存容量和计算丰富度;然而,这一临界状态的严格表征仍然难以捉摸。在这里,我们通过将混沌传播动力学平均场理论(DMFT)与无限维遍历和乘法遍历定理以及尖锐的谱隙和小化估计相结合来解决这一差距,以建立连续时间ESNs,几乎肯定存在唯一的临界增益gc,在该增益gc处最大Lyapunov指数Λ(g)穿过零。我们推导了一个精确的一维DMFT公式Λ(g)=lng+ emu ‘ g[ln|ϕ ’ (X)|],证明它允许一个单零,并通过六个独立的诊断-光谱缩放,远程相关性,分形吸引子维数,相空间几何,不变测量统计和时空相干性来验证gc。我们的研究结果为混沌边缘ESNs提供了理论基础,阐明了为什么边际稳定的储层会产生最佳性能,并为将混沌动力学集成到现代机器学习架构中奠定了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizing the edge of chaos in echo state networks
Chaos theory examines how simple deterministic rules can produce unpredictable yet highly structured dynamics due to their extreme sensitivity to initial conditions. In reservoir computing, and particularly in Echo State Networks (ESNs), operating at the so-called “edge of chaos” has been empirically shown to maximize memory capacity and computational richness; however, a rigorous characterization of this critical regime has remained elusive. Here, we address this gap by combining propagation-of-chaos Dynamical Mean-Field Theory (DMFT) with infinite-dimensional ergodic and multiplicative-ergodic theorems and sharp spectral-gap and minorization estimates to establish, for continuous-time ESNs, the almost-sure existence of a unique critical gain gc at which the maximal Lyapunov exponent Λ(g) crosses zero. We derive an exact one-dimensional DMFT formula Λ(g)=lng+Eμ̄g[ln|ϕ(X)|], prove that it admits a single zero, and validate gc empirically via six independent diagnostics—spectral scaling, long-range correlations, fractal attractor dimension, phase-space geometry, invariant-measure statistics, and spatio-temporal coherence. Our results provide a theoretical foundation for edge-of-chaos ESNs, illuminating why marginally stable reservoirs yield optimal performance and laying the theoretical groundwork for integrating chaotic dynamics into modern machine learning architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信