Shuyao Lin , David Holec , Davide G. Sangiovanni , Thomas Leiner , Lars Hultman , Paul H. Mayrhofer , Nikola Koutná
{"title":"基于机器学习势分子动力学的二硼化物剪切激活相变研究","authors":"Shuyao Lin , David Holec , Davide G. Sangiovanni , Thomas Leiner , Lars Hultman , Paul H. Mayrhofer , Nikola Koutná","doi":"10.1016/j.actamat.2025.121606","DOIUrl":null,"url":null,"abstract":"<div><div>The layered character of transition metal diborides (TMB<sub>2</sub>:s)—with three structure polymorphs representing different stackings of the metallic sublattice—evokes the possibility of activating phase-transformation plasticity via mechanical shear strain. This is critical to overcome the most severe limitation of TMB<sub>2</sub>:s: their brittleness. To understand finite-temperature mechanical response of the <span><math><mi>α</mi></math></span>, <span><math><mi>ω</mi></math></span>, and <span><math><mi>γ</mi></math></span> polymorphs at the atomic scale, we train machine-learning interatomic potentials (MLIPs) for TMB<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>:s, TM <span><math><mo>=</mo></math></span> (Ti, Ta, W, Re). Validation against <em>ab initio</em> data set supports the MLIPs’ capability to predict structural and elastic properties, as well as shear-induced slipping and phase transformations. Nanoscale molecular dynamics simulations (<span><math><mrow><mo>></mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span> atoms; <span><math><mrow><mo>≈</mo><msup><mrow><mn>5</mn></mrow><mrow><mn>3</mn></mrow></msup><mspace></mspace><msup><mrow><mi>nm</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>) allow evaluating theoretical shear strengths attainable in single-crystal TMB<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>:s and their temperature evolution from 300 up to 1200 K. Quantitative structural analysis via angular and bond-order Steinhardt parameter descriptors shows that <span><math><mrow><mrow><mo>(</mo><mn>0001</mn><mo>)</mo></mrow><mrow><mo>[</mo><mover><mrow><mn>1</mn></mrow><mo>¯</mo></mover><mn>2</mn><mover><mrow><mn>1</mn></mrow><mo>¯</mo></mover><mn>0</mn><mo>]</mo></mrow></mrow></math></span> and <span><math><mrow><mrow><mo>(</mo><mn>0001</mn><mo>)</mo></mrow><mrow><mo>[</mo><mn>10</mn><mover><mrow><mn>1</mn></mrow><mo>¯</mo></mover><mn>0</mn><mo>]</mo></mrow></mrow></math></span> shearing activates transformations between the (energetically) metastable and the preferred phase of TiB<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, TaB<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, and WB<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>. These transformations can be promoted by additional tensile or compressive strain along the [0001] axis. The preferred phase of ReB<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> shows negative thermal expansion and an unprecedented shear-induced plasticity mechanism: metallic/boron layer interpenetration and uniform lattice rotation.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"301 ","pages":"Article 121606"},"PeriodicalIF":9.3000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shear-activated phase transformations of diborides via machine-learning potential molecular dynamics\",\"authors\":\"Shuyao Lin , David Holec , Davide G. Sangiovanni , Thomas Leiner , Lars Hultman , Paul H. Mayrhofer , Nikola Koutná\",\"doi\":\"10.1016/j.actamat.2025.121606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The layered character of transition metal diborides (TMB<sub>2</sub>:s)—with three structure polymorphs representing different stackings of the metallic sublattice—evokes the possibility of activating phase-transformation plasticity via mechanical shear strain. This is critical to overcome the most severe limitation of TMB<sub>2</sub>:s: their brittleness. To understand finite-temperature mechanical response of the <span><math><mi>α</mi></math></span>, <span><math><mi>ω</mi></math></span>, and <span><math><mi>γ</mi></math></span> polymorphs at the atomic scale, we train machine-learning interatomic potentials (MLIPs) for TMB<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>:s, TM <span><math><mo>=</mo></math></span> (Ti, Ta, W, Re). Validation against <em>ab initio</em> data set supports the MLIPs’ capability to predict structural and elastic properties, as well as shear-induced slipping and phase transformations. Nanoscale molecular dynamics simulations (<span><math><mrow><mo>></mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span> atoms; <span><math><mrow><mo>≈</mo><msup><mrow><mn>5</mn></mrow><mrow><mn>3</mn></mrow></msup><mspace></mspace><msup><mrow><mi>nm</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>) allow evaluating theoretical shear strengths attainable in single-crystal TMB<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>:s and their temperature evolution from 300 up to 1200 K. Quantitative structural analysis via angular and bond-order Steinhardt parameter descriptors shows that <span><math><mrow><mrow><mo>(</mo><mn>0001</mn><mo>)</mo></mrow><mrow><mo>[</mo><mover><mrow><mn>1</mn></mrow><mo>¯</mo></mover><mn>2</mn><mover><mrow><mn>1</mn></mrow><mo>¯</mo></mover><mn>0</mn><mo>]</mo></mrow></mrow></math></span> and <span><math><mrow><mrow><mo>(</mo><mn>0001</mn><mo>)</mo></mrow><mrow><mo>[</mo><mn>10</mn><mover><mrow><mn>1</mn></mrow><mo>¯</mo></mover><mn>0</mn><mo>]</mo></mrow></mrow></math></span> shearing activates transformations between the (energetically) metastable and the preferred phase of TiB<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, TaB<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, and WB<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>. These transformations can be promoted by additional tensile or compressive strain along the [0001] axis. The preferred phase of ReB<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> shows negative thermal expansion and an unprecedented shear-induced plasticity mechanism: metallic/boron layer interpenetration and uniform lattice rotation.</div></div>\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"301 \",\"pages\":\"Article 121606\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359645425008924\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425008924","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Shear-activated phase transformations of diborides via machine-learning potential molecular dynamics
The layered character of transition metal diborides (TMB2:s)—with three structure polymorphs representing different stackings of the metallic sublattice—evokes the possibility of activating phase-transformation plasticity via mechanical shear strain. This is critical to overcome the most severe limitation of TMB2:s: their brittleness. To understand finite-temperature mechanical response of the , , and polymorphs at the atomic scale, we train machine-learning interatomic potentials (MLIPs) for TMB:s, TM (Ti, Ta, W, Re). Validation against ab initio data set supports the MLIPs’ capability to predict structural and elastic properties, as well as shear-induced slipping and phase transformations. Nanoscale molecular dynamics simulations ( atoms; ) allow evaluating theoretical shear strengths attainable in single-crystal TMB:s and their temperature evolution from 300 up to 1200 K. Quantitative structural analysis via angular and bond-order Steinhardt parameter descriptors shows that and shearing activates transformations between the (energetically) metastable and the preferred phase of TiB, TaB, and WB. These transformations can be promoted by additional tensile or compressive strain along the [0001] axis. The preferred phase of ReB shows negative thermal expansion and an unprecedented shear-induced plasticity mechanism: metallic/boron layer interpenetration and uniform lattice rotation.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.