Sammohith Nittala , Jaarli Suviranta , Tatu Pinomaa , Thomas Voisin , Duncan Burns , Joseph T. McKeown , Anssi Laukkanen , Nikolas Provatas
{"title":"薄膜快速凝固过程中的界面形态和位错介导过程","authors":"Sammohith Nittala , Jaarli Suviranta , Tatu Pinomaa , Thomas Voisin , Duncan Burns , Joseph T. McKeown , Anssi Laukkanen , Nikolas Provatas","doi":"10.1016/j.actamat.2025.121581","DOIUrl":null,"url":null,"abstract":"<div><div>Rapid solidification experiments have, in recent years, revealed a wealth of new microstructural phenomena that suggest a strong connection between the kinetics of solidification and the crystalline structures that emerge as a result. In this work, we investigate the interplay between interface morphology and defect-mediated processes during rapid solidification conditions using a Phase Field Crystal (PFC) model, enabling us to simultaneously and efficiently explore the physics of solidification and elasto-plasticity in the formalism of a single-field theory. We predict that there are two mechanisms by which dislocations emitted directly from the solid–liquid interface induce orientation gradients as well as the formation of subgrain boundaries within a single solidifying cell. We relate these mechanisms to the morphology of the moving solid–liquid interface and identify a suitable control parameter in the PFC model with which we can go between said morphologies by effectively changing the relative strength of the capillary length and kinetic coefficients of the solid–liquid interface. Thus, we are able to provide mechanistic explanations for several microstructural features (with an emphasis on orientation gradients and subgrain boundaries) observed during the rapid solidification of pure materials. We also provide a simple explanation for the formation of “jagged” subgrain boundaries, which is consistent with our experimental observations in rapidly solidified samples of Aluminum, whose mechanisms have thus far been unknown.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"302 ","pages":"Article 121581"},"PeriodicalIF":9.3000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interface morphology and dislocation-mediated processes during rapid solidification of thin films\",\"authors\":\"Sammohith Nittala , Jaarli Suviranta , Tatu Pinomaa , Thomas Voisin , Duncan Burns , Joseph T. McKeown , Anssi Laukkanen , Nikolas Provatas\",\"doi\":\"10.1016/j.actamat.2025.121581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rapid solidification experiments have, in recent years, revealed a wealth of new microstructural phenomena that suggest a strong connection between the kinetics of solidification and the crystalline structures that emerge as a result. In this work, we investigate the interplay between interface morphology and defect-mediated processes during rapid solidification conditions using a Phase Field Crystal (PFC) model, enabling us to simultaneously and efficiently explore the physics of solidification and elasto-plasticity in the formalism of a single-field theory. We predict that there are two mechanisms by which dislocations emitted directly from the solid–liquid interface induce orientation gradients as well as the formation of subgrain boundaries within a single solidifying cell. We relate these mechanisms to the morphology of the moving solid–liquid interface and identify a suitable control parameter in the PFC model with which we can go between said morphologies by effectively changing the relative strength of the capillary length and kinetic coefficients of the solid–liquid interface. Thus, we are able to provide mechanistic explanations for several microstructural features (with an emphasis on orientation gradients and subgrain boundaries) observed during the rapid solidification of pure materials. We also provide a simple explanation for the formation of “jagged” subgrain boundaries, which is consistent with our experimental observations in rapidly solidified samples of Aluminum, whose mechanisms have thus far been unknown.</div></div>\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"302 \",\"pages\":\"Article 121581\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359645425008675\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425008675","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Interface morphology and dislocation-mediated processes during rapid solidification of thin films
Rapid solidification experiments have, in recent years, revealed a wealth of new microstructural phenomena that suggest a strong connection between the kinetics of solidification and the crystalline structures that emerge as a result. In this work, we investigate the interplay between interface morphology and defect-mediated processes during rapid solidification conditions using a Phase Field Crystal (PFC) model, enabling us to simultaneously and efficiently explore the physics of solidification and elasto-plasticity in the formalism of a single-field theory. We predict that there are two mechanisms by which dislocations emitted directly from the solid–liquid interface induce orientation gradients as well as the formation of subgrain boundaries within a single solidifying cell. We relate these mechanisms to the morphology of the moving solid–liquid interface and identify a suitable control parameter in the PFC model with which we can go between said morphologies by effectively changing the relative strength of the capillary length and kinetic coefficients of the solid–liquid interface. Thus, we are able to provide mechanistic explanations for several microstructural features (with an emphasis on orientation gradients and subgrain boundaries) observed during the rapid solidification of pure materials. We also provide a simple explanation for the formation of “jagged” subgrain boundaries, which is consistent with our experimental observations in rapidly solidified samples of Aluminum, whose mechanisms have thus far been unknown.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.