Michael K Gilson, Jerome Eberhardt, Peter Škrinjar, Janani Durairaj, Xavier Robin, Andriy Kryshtafovych
{"title":"CASP16中药物蛋白-配体位姿和亲和力预测的评估。","authors":"Michael K Gilson, Jerome Eberhardt, Peter Škrinjar, Janani Durairaj, Xavier Robin, Andriy Kryshtafovych","doi":"10.1002/prot.70061","DOIUrl":null,"url":null,"abstract":"<p><p>The protein-ligand component of the 16th Critical Assessment of Structure Prediction (CASP16) challenged participants to predict both binding poses and affinities of small molecules to protein targets, with a focus on drug-like compounds from pharmaceutical discovery projects. Thirty research groups submitted predictions for 229 protein-ligand pose targets and 140 affinity targets across five protein systems. Among the submitted predictions, template-based pose-prediction methods did particularly well, with the best groups achieving mean LDDT-PLI values of 0.69 (scale of 0-1 with 1 best). For comparison, we also ran a set of automated baseline pose-prediction methods, including ones using deep neural networks. Of these, AlphaFold 3 did particularly well, with a mean LDDT-PLI of 0.8, thus outscoring the best CASP16 predictor. The CASP affinity predictions showed modest correlation with experimental data (maximum Kendall's τ = 0.42), well below the theoretical maximum possible given experimental uncertainty (~0.73). As seen in prior challenges, providing experimental structures did not improve affinity predictions in the second stage of the challenge, suggesting that the scoring functions used here are a key limiting factor. Overall, the accuracy achieved by CASP participants is similar to that observed in the prior Drug Design Data Resource (D3R) blinded prediction challenges. The present results highlight the progress and persistent challenges in computational protein-ligand modeling and provide valuable benchmarks for the field of computer-aided drug design.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of Pharmaceutical Protein-Ligand Pose and Affinity Predictions in CASP16.\",\"authors\":\"Michael K Gilson, Jerome Eberhardt, Peter Škrinjar, Janani Durairaj, Xavier Robin, Andriy Kryshtafovych\",\"doi\":\"10.1002/prot.70061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The protein-ligand component of the 16th Critical Assessment of Structure Prediction (CASP16) challenged participants to predict both binding poses and affinities of small molecules to protein targets, with a focus on drug-like compounds from pharmaceutical discovery projects. Thirty research groups submitted predictions for 229 protein-ligand pose targets and 140 affinity targets across five protein systems. Among the submitted predictions, template-based pose-prediction methods did particularly well, with the best groups achieving mean LDDT-PLI values of 0.69 (scale of 0-1 with 1 best). For comparison, we also ran a set of automated baseline pose-prediction methods, including ones using deep neural networks. Of these, AlphaFold 3 did particularly well, with a mean LDDT-PLI of 0.8, thus outscoring the best CASP16 predictor. The CASP affinity predictions showed modest correlation with experimental data (maximum Kendall's τ = 0.42), well below the theoretical maximum possible given experimental uncertainty (~0.73). As seen in prior challenges, providing experimental structures did not improve affinity predictions in the second stage of the challenge, suggesting that the scoring functions used here are a key limiting factor. Overall, the accuracy achieved by CASP participants is similar to that observed in the prior Drug Design Data Resource (D3R) blinded prediction challenges. The present results highlight the progress and persistent challenges in computational protein-ligand modeling and provide valuable benchmarks for the field of computer-aided drug design.</p>\",\"PeriodicalId\":56271,\"journal\":{\"name\":\"Proteins-Structure Function and Bioinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteins-Structure Function and Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/prot.70061\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.70061","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Assessment of Pharmaceutical Protein-Ligand Pose and Affinity Predictions in CASP16.
The protein-ligand component of the 16th Critical Assessment of Structure Prediction (CASP16) challenged participants to predict both binding poses and affinities of small molecules to protein targets, with a focus on drug-like compounds from pharmaceutical discovery projects. Thirty research groups submitted predictions for 229 protein-ligand pose targets and 140 affinity targets across five protein systems. Among the submitted predictions, template-based pose-prediction methods did particularly well, with the best groups achieving mean LDDT-PLI values of 0.69 (scale of 0-1 with 1 best). For comparison, we also ran a set of automated baseline pose-prediction methods, including ones using deep neural networks. Of these, AlphaFold 3 did particularly well, with a mean LDDT-PLI of 0.8, thus outscoring the best CASP16 predictor. The CASP affinity predictions showed modest correlation with experimental data (maximum Kendall's τ = 0.42), well below the theoretical maximum possible given experimental uncertainty (~0.73). As seen in prior challenges, providing experimental structures did not improve affinity predictions in the second stage of the challenge, suggesting that the scoring functions used here are a key limiting factor. Overall, the accuracy achieved by CASP participants is similar to that observed in the prior Drug Design Data Resource (D3R) blinded prediction challenges. The present results highlight the progress and persistent challenges in computational protein-ligand modeling and provide valuable benchmarks for the field of computer-aided drug design.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.