Yixuan Wang, Xinyuan Liu, Yimin Fan, Binghui Xie, James Cheng, Kam Chung Wong, Peter Cheung, Irwin King, Yu Li
{"title":"基于基础模型的迁移学习预测未知细胞类型的药物反应。","authors":"Yixuan Wang, Xinyuan Liu, Yimin Fan, Binghui Xie, James Cheng, Kam Chung Wong, Peter Cheung, Irwin King, Yu Li","doi":"10.1038/s43588-025-00887-6","DOIUrl":null,"url":null,"abstract":"<p><p>Drug repurposing through single-cell perturbation response prediction provides a cost-effective approach for drug development, but accurately predicting responses in unseen cell types that emerge during disease progression remains challenging. Existing methods struggle to achieve generalizable cell-type-specific predictions. To address these limitations, we introduce the cell-type-specific drug perturbatIon responses predictor (CRISP), a framework for predicting perturbation responses in previously unseen cell types at single-cell resolution. CRISP leverages foundation models and cell-type-specific learning strategies to enable effective transfer of information from control to perturbed states even with limited empirical data. Through systematic evaluation across increasingly challenging scenarios, from unseen cell types to cross-platform predictions, CRISP shows generalizability and performance improvements. We demonstrate CRISP's drug repurposing potential through zero-shot prediction from solid tumor data to sorafenib's therapeutic effects in chronic myeloid leukemia. The predicted anti-tumor mechanisms, including CXCR4 pathway inhibition, are supported by independent studies as an effective therapeutic strategy in chronic myeloid leukemia, aligning with past studies and clinical trials.</p>","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":" ","pages":""},"PeriodicalIF":18.3000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting drug responses of unseen cell types through transfer learning with foundation models.\",\"authors\":\"Yixuan Wang, Xinyuan Liu, Yimin Fan, Binghui Xie, James Cheng, Kam Chung Wong, Peter Cheung, Irwin King, Yu Li\",\"doi\":\"10.1038/s43588-025-00887-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drug repurposing through single-cell perturbation response prediction provides a cost-effective approach for drug development, but accurately predicting responses in unseen cell types that emerge during disease progression remains challenging. Existing methods struggle to achieve generalizable cell-type-specific predictions. To address these limitations, we introduce the cell-type-specific drug perturbatIon responses predictor (CRISP), a framework for predicting perturbation responses in previously unseen cell types at single-cell resolution. CRISP leverages foundation models and cell-type-specific learning strategies to enable effective transfer of information from control to perturbed states even with limited empirical data. Through systematic evaluation across increasingly challenging scenarios, from unseen cell types to cross-platform predictions, CRISP shows generalizability and performance improvements. We demonstrate CRISP's drug repurposing potential through zero-shot prediction from solid tumor data to sorafenib's therapeutic effects in chronic myeloid leukemia. The predicted anti-tumor mechanisms, including CXCR4 pathway inhibition, are supported by independent studies as an effective therapeutic strategy in chronic myeloid leukemia, aligning with past studies and clinical trials.</p>\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":18.3000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43588-025-00887-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43588-025-00887-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Predicting drug responses of unseen cell types through transfer learning with foundation models.
Drug repurposing through single-cell perturbation response prediction provides a cost-effective approach for drug development, but accurately predicting responses in unseen cell types that emerge during disease progression remains challenging. Existing methods struggle to achieve generalizable cell-type-specific predictions. To address these limitations, we introduce the cell-type-specific drug perturbatIon responses predictor (CRISP), a framework for predicting perturbation responses in previously unseen cell types at single-cell resolution. CRISP leverages foundation models and cell-type-specific learning strategies to enable effective transfer of information from control to perturbed states even with limited empirical data. Through systematic evaluation across increasingly challenging scenarios, from unseen cell types to cross-platform predictions, CRISP shows generalizability and performance improvements. We demonstrate CRISP's drug repurposing potential through zero-shot prediction from solid tumor data to sorafenib's therapeutic effects in chronic myeloid leukemia. The predicted anti-tumor mechanisms, including CXCR4 pathway inhibition, are supported by independent studies as an effective therapeutic strategy in chronic myeloid leukemia, aligning with past studies and clinical trials.