一项新技术在学术医疗中心研究实施的障碍个案研究。

IF 7.7
PLOS digital health Pub Date : 2025-10-03 eCollection Date: 2025-10-01 DOI:10.1371/journal.pdig.0001014
Mechelle Sanders, Kevin Fiscella, Jack Chang, Alain LeBlanc, Peter Veazie
{"title":"一项新技术在学术医疗中心研究实施的障碍个案研究。","authors":"Mechelle Sanders, Kevin Fiscella, Jack Chang, Alain LeBlanc, Peter Veazie","doi":"10.1371/journal.pdig.0001014","DOIUrl":null,"url":null,"abstract":"<p><p>Natural Language Processing allows extracting unstructured text data from electronic health records (EHR), but historically required extensive coding and expertise. Amazon Comprehend Medical (ACM) offers a scalable solution for mining EHR data without extensive natural language processing expertise. This case study examined barriers and facilitators to implementing ACM in an academic medical center. We reviewed correspondence regarding ACM implementation between study investigators and respective experts within the medical center. We qualitatively coded the correspondence for barriers and facilitators using the Consolidated Framework for Implementation Research (CFIR) framework as a guide. Key findings included the involvement of non-traditional stakeholders in the approval process and unexpected limitations of anticipated facilitators. The study revealed that implementing novel technologies like ACM in academic medical settings requires careful consideration of safety protocols, which may slow adoption. Our findings can guide research teams in navigating the implementation of similar technologies, balancing innovation with necessary safeguards.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"4 10","pages":"e0001014"},"PeriodicalIF":7.7000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12494264/pdf/","citationCount":"0","resultStr":"{\"title\":\"A case study on barriers to the research implementation of a novel technology in an academic medical center.\",\"authors\":\"Mechelle Sanders, Kevin Fiscella, Jack Chang, Alain LeBlanc, Peter Veazie\",\"doi\":\"10.1371/journal.pdig.0001014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Natural Language Processing allows extracting unstructured text data from electronic health records (EHR), but historically required extensive coding and expertise. Amazon Comprehend Medical (ACM) offers a scalable solution for mining EHR data without extensive natural language processing expertise. This case study examined barriers and facilitators to implementing ACM in an academic medical center. We reviewed correspondence regarding ACM implementation between study investigators and respective experts within the medical center. We qualitatively coded the correspondence for barriers and facilitators using the Consolidated Framework for Implementation Research (CFIR) framework as a guide. Key findings included the involvement of non-traditional stakeholders in the approval process and unexpected limitations of anticipated facilitators. The study revealed that implementing novel technologies like ACM in academic medical settings requires careful consideration of safety protocols, which may slow adoption. Our findings can guide research teams in navigating the implementation of similar technologies, balancing innovation with necessary safeguards.</p>\",\"PeriodicalId\":74465,\"journal\":{\"name\":\"PLOS digital health\",\"volume\":\"4 10\",\"pages\":\"e0001014\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12494264/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLOS digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pdig.0001014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pdig.0001014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自然语言处理允许从电子健康记录(EHR)中提取非结构化文本数据,但过去需要大量的编码和专业知识。Amazon understand Medical (ACM)为挖掘EHR数据提供了可扩展的解决方案,无需大量的自然语言处理专业知识。本案例研究考察了在学术医疗中心实施ACM的障碍和促进因素。我们审查了研究人员与医疗中心各自专家之间关于ACM实施的通信。我们使用实施研究统一框架(CFIR)框架作为指导,对障碍和促进因素的对应进行了定性编码。主要发现包括非传统利益相关者参与批准过程以及预期的促进者的意外限制。研究表明,在学术医疗环境中实施像ACM这样的新技术需要仔细考虑安全协议,这可能会减慢采用速度。我们的研究结果可以指导研究团队导航类似技术的实施,平衡创新与必要的保障措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A case study on barriers to the research implementation of a novel technology in an academic medical center.

A case study on barriers to the research implementation of a novel technology in an academic medical center.

A case study on barriers to the research implementation of a novel technology in an academic medical center.

A case study on barriers to the research implementation of a novel technology in an academic medical center.

Natural Language Processing allows extracting unstructured text data from electronic health records (EHR), but historically required extensive coding and expertise. Amazon Comprehend Medical (ACM) offers a scalable solution for mining EHR data without extensive natural language processing expertise. This case study examined barriers and facilitators to implementing ACM in an academic medical center. We reviewed correspondence regarding ACM implementation between study investigators and respective experts within the medical center. We qualitatively coded the correspondence for barriers and facilitators using the Consolidated Framework for Implementation Research (CFIR) framework as a guide. Key findings included the involvement of non-traditional stakeholders in the approval process and unexpected limitations of anticipated facilitators. The study revealed that implementing novel technologies like ACM in academic medical settings requires careful consideration of safety protocols, which may slow adoption. Our findings can guide research teams in navigating the implementation of similar technologies, balancing innovation with necessary safeguards.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信