Chiara Gambardella , Marco Basili , Filippo Castelli , Roberta Miroglio , Elena Manini , Grazia Marina Quero , Rodrigo Almeda , Francesco Regoli , Marco Faimali , Francesca Garaventa
{"title":"早期生物膜在波罗的海传统塑料和可生物降解塑料上的定植使用中生态方法。","authors":"Chiara Gambardella , Marco Basili , Filippo Castelli , Roberta Miroglio , Elena Manini , Grazia Marina Quero , Rodrigo Almeda , Francesco Regoli , Marco Faimali , Francesca Garaventa","doi":"10.1016/j.marenvres.2025.107592","DOIUrl":null,"url":null,"abstract":"<div><div>Bioplastics are promising alternatives to conventional plastics, but their potential entry into marine ecosystems highlights the need for a better understanding of their interactions with microbial communities, including their role in the plastisphere. Here, we characterized the early biofilm formation on traditional plastics and bioplastics using a mesocosm approach. We tested the hypothesis that distinct bacterial communities selectively colonize traditional and biodegradable plastics in the marine environment. Specifically, fragments of the petroleum-based plastic polypropylene (PP) and the bioplastics Poly(3-hydroxybutyrate)- hydroxyvalerate (PHBv) and polylactic acid (PLA) were submerged in Baltic Sea mesocosms for three weeks. Biofilm colonization, prokaryotic abundance, and community composition were assessed through scanning electronic microscopy analysis, epifluorescence microscopy and 16S rRNA gene metabarcoding, respectively. Biofilm development increased over time on both traditional and bioplastics, with photosynthetic organisms appearing after 3 weeks. However, prokaryotic abundance decreased over time except on PLA surfaces. Prokaryotic communities’ composition differed among biofilms formed on the different polymers. The microbial community associated with conventional plastic PP was more similar to that of the seawater in the control treatment, while biofilms on PLA and PHBv shared a higher degree of similarity with each other. These findings suggest that microbial communities selectively colonize different plastic types, with bioplastics supporting distinct and specific bacterial biofilm assemblages over three-week exposure. The great diversity observed in bioplastics, particularly PLA, suggests they may support more complex and potentially active plastisphere communities after only three weeks of exposure to the Baltic Sea.</div></div>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":"212 ","pages":"Article 107592"},"PeriodicalIF":3.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early biofilm colonization on traditional and biodegradable plastics in the Baltic Sea using a mesocosm approach\",\"authors\":\"Chiara Gambardella , Marco Basili , Filippo Castelli , Roberta Miroglio , Elena Manini , Grazia Marina Quero , Rodrigo Almeda , Francesco Regoli , Marco Faimali , Francesca Garaventa\",\"doi\":\"10.1016/j.marenvres.2025.107592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bioplastics are promising alternatives to conventional plastics, but their potential entry into marine ecosystems highlights the need for a better understanding of their interactions with microbial communities, including their role in the plastisphere. Here, we characterized the early biofilm formation on traditional plastics and bioplastics using a mesocosm approach. We tested the hypothesis that distinct bacterial communities selectively colonize traditional and biodegradable plastics in the marine environment. Specifically, fragments of the petroleum-based plastic polypropylene (PP) and the bioplastics Poly(3-hydroxybutyrate)- hydroxyvalerate (PHBv) and polylactic acid (PLA) were submerged in Baltic Sea mesocosms for three weeks. Biofilm colonization, prokaryotic abundance, and community composition were assessed through scanning electronic microscopy analysis, epifluorescence microscopy and 16S rRNA gene metabarcoding, respectively. Biofilm development increased over time on both traditional and bioplastics, with photosynthetic organisms appearing after 3 weeks. However, prokaryotic abundance decreased over time except on PLA surfaces. Prokaryotic communities’ composition differed among biofilms formed on the different polymers. The microbial community associated with conventional plastic PP was more similar to that of the seawater in the control treatment, while biofilms on PLA and PHBv shared a higher degree of similarity with each other. These findings suggest that microbial communities selectively colonize different plastic types, with bioplastics supporting distinct and specific bacterial biofilm assemblages over three-week exposure. The great diversity observed in bioplastics, particularly PLA, suggests they may support more complex and potentially active plastisphere communities after only three weeks of exposure to the Baltic Sea.</div></div>\",\"PeriodicalId\":18204,\"journal\":{\"name\":\"Marine environmental research\",\"volume\":\"212 \",\"pages\":\"Article 107592\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine environmental research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S014111362500649X\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine environmental research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014111362500649X","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Early biofilm colonization on traditional and biodegradable plastics in the Baltic Sea using a mesocosm approach
Bioplastics are promising alternatives to conventional plastics, but their potential entry into marine ecosystems highlights the need for a better understanding of their interactions with microbial communities, including their role in the plastisphere. Here, we characterized the early biofilm formation on traditional plastics and bioplastics using a mesocosm approach. We tested the hypothesis that distinct bacterial communities selectively colonize traditional and biodegradable plastics in the marine environment. Specifically, fragments of the petroleum-based plastic polypropylene (PP) and the bioplastics Poly(3-hydroxybutyrate)- hydroxyvalerate (PHBv) and polylactic acid (PLA) were submerged in Baltic Sea mesocosms for three weeks. Biofilm colonization, prokaryotic abundance, and community composition were assessed through scanning electronic microscopy analysis, epifluorescence microscopy and 16S rRNA gene metabarcoding, respectively. Biofilm development increased over time on both traditional and bioplastics, with photosynthetic organisms appearing after 3 weeks. However, prokaryotic abundance decreased over time except on PLA surfaces. Prokaryotic communities’ composition differed among biofilms formed on the different polymers. The microbial community associated with conventional plastic PP was more similar to that of the seawater in the control treatment, while biofilms on PLA and PHBv shared a higher degree of similarity with each other. These findings suggest that microbial communities selectively colonize different plastic types, with bioplastics supporting distinct and specific bacterial biofilm assemblages over three-week exposure. The great diversity observed in bioplastics, particularly PLA, suggests they may support more complex and potentially active plastisphere communities after only three weeks of exposure to the Baltic Sea.
期刊介绍:
Marine Environmental Research publishes original research papers on chemical, physical, and biological interactions in the oceans and coastal waters. The journal serves as a forum for new information on biology, chemistry, and toxicology and syntheses that advance understanding of marine environmental processes.
Submission of multidisciplinary studies is encouraged. Studies that utilize experimental approaches to clarify the roles of anthropogenic and natural causes of changes in marine ecosystems are especially welcome, as are those studies that represent new developments of a theoretical or conceptual aspect of marine science. All papers published in this journal are reviewed by qualified peers prior to acceptance and publication. Examples of topics considered to be appropriate for the journal include, but are not limited to, the following:
– The extent, persistence, and consequences of change and the recovery from such change in natural marine systems
– The biochemical, physiological, and ecological consequences of contaminants to marine organisms and ecosystems
– The biogeochemistry of naturally occurring and anthropogenic substances
– Models that describe and predict the above processes
– Monitoring studies, to the extent that their results provide new information on functional processes
– Methodological papers describing improved quantitative techniques for the marine sciences.