基于深度和浅学习模型的脑沟深度、曲率和厚度的顶点分类研究

IF 10.1 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Roberto Goya-Maldonado, Tracy Erwin-Grabner, Ling-Li Zeng, Christopher R K Ching, Andre Aleman, Alyssa R Amod, Zeynep Basgoze, Francesco Benedetti, Bianca Besteher, Katharina Brosch, Robin Bülow, Romain Colle, Colm G Connolly, Emmanuelle Corruble, Baptiste Couvy-Duchesne, Kathryn Cullen, Udo Dannlowski, Christopher G Davey, Annemiek Dols, Jan Ernsting, Jennifer W Evans, Lukas Fisch, Paola Fuentes-Claramonte, Ali Saffet Gonul, Ian H Gotlib, Hans J Grabe, Nynke A Groenewold, Dominik Grotegerd, Tim Hahn, J Paul Hamilton, Laura K M Han, Ben J Harrison, Tiffany C Ho, Neda Jahanshad, Alec J Jamieson, Andriana Karuk, Tilo Kircher, Bonnie Klimes-Dougan, Sheri-Michelle Koopowitz, Thomas Lancaster, Ramona Leenings, Meng Li, David E J Linden, Frank P MacMaster, David M A Mehler, Susanne Meinert, Elisa Melloni, Bryon A Mueller, Benson Mwangi, Igor Nenadić, Amar Ojha, Yasumasa Okamoto, Mardien L Oudega, Brenda W J H Penninx, Sara Poletti, Edith Pomarol-Clotet, Maria J Portella, Joaquim Radua, Elena Rodríguez-Cano, Matthew D Sacchet, Raymond Salvador, Anouk Schrantee, Kang Sim, Jair C Soares, Aleix Solanes, Dan J Stein, Frederike Stein, Aleks Stolicyn, Sophia I Thomopoulos, Yara J Toenders, Aslihan Uyar-Demir, Eduard Vieta, Yolanda Vives-Gilabert, Henry Völzke, Martin Walter, Heather C Whalley, Sarah Whittle, Nils Winter, Katharina Wittfeld, Margaret J Wright, Mon-Ju Wu, Tony T Yang, Carlos Zarate, Dick J Veltman, Lianne Schmaal, Paul M Thompson
{"title":"基于深度和浅学习模型的脑沟深度、曲率和厚度的顶点分类研究","authors":"Roberto Goya-Maldonado, Tracy Erwin-Grabner, Ling-Li Zeng, Christopher R K Ching, Andre Aleman, Alyssa R Amod, Zeynep Basgoze, Francesco Benedetti, Bianca Besteher, Katharina Brosch, Robin Bülow, Romain Colle, Colm G Connolly, Emmanuelle Corruble, Baptiste Couvy-Duchesne, Kathryn Cullen, Udo Dannlowski, Christopher G Davey, Annemiek Dols, Jan Ernsting, Jennifer W Evans, Lukas Fisch, Paola Fuentes-Claramonte, Ali Saffet Gonul, Ian H Gotlib, Hans J Grabe, Nynke A Groenewold, Dominik Grotegerd, Tim Hahn, J Paul Hamilton, Laura K M Han, Ben J Harrison, Tiffany C Ho, Neda Jahanshad, Alec J Jamieson, Andriana Karuk, Tilo Kircher, Bonnie Klimes-Dougan, Sheri-Michelle Koopowitz, Thomas Lancaster, Ramona Leenings, Meng Li, David E J Linden, Frank P MacMaster, David M A Mehler, Susanne Meinert, Elisa Melloni, Bryon A Mueller, Benson Mwangi, Igor Nenadić, Amar Ojha, Yasumasa Okamoto, Mardien L Oudega, Brenda W J H Penninx, Sara Poletti, Edith Pomarol-Clotet, Maria J Portella, Joaquim Radua, Elena Rodríguez-Cano, Matthew D Sacchet, Raymond Salvador, Anouk Schrantee, Kang Sim, Jair C Soares, Aleix Solanes, Dan J Stein, Frederike Stein, Aleks Stolicyn, Sophia I Thomopoulos, Yara J Toenders, Aslihan Uyar-Demir, Eduard Vieta, Yolanda Vives-Gilabert, Henry Völzke, Martin Walter, Heather C Whalley, Sarah Whittle, Nils Winter, Katharina Wittfeld, Margaret J Wright, Mon-Ju Wu, Tony T Yang, Carlos Zarate, Dick J Veltman, Lianne Schmaal, Paul M Thompson","doi":"10.1038/s41380-025-03273-w","DOIUrl":null,"url":null,"abstract":"<p><p>Major depressive disorder (MDD) is a complex psychiatric disorder that affects the lives of hundreds of millions of individuals around the globe. Even today, researchers debate if morphological alterations in the brain are linked to MDD, likely due to the heterogeneity of this disorder. The application of deep learning tools to neuroimaging data, capable of capturing complex non-linear patterns, has the potential to provide diagnostic and predictive biomarkers for MDD. However, previous attempts to demarcate MDD patients and healthy controls (HC) based on segmented cortical features via linear machine learning approaches have reported low accuracies. In this study, we used globally representative data from the ENIGMA-MDD working group containing 7012 participants from 31 sites (N = 2772 MDD and N = 4240 HC), which allows a comprehensive analysis with generalizable results. Based on the hypothesis that integration of vertex-wise cortical features can improve classification performance, we evaluated the classification of a DenseNet and a Support Vector Machine (SVM), with the expectation that the former would outperform the latter. As we analyzed a multi-site sample, we additionally applied the ComBat harmonization tool to remove potential nuisance effects of site. We found that both classifiers exhibited close to chance performance (balanced accuracy DenseNet: 51%; SVM: 53%), when estimated on unseen sites. Slightly higher classification performance (balanced accuracy DenseNet: 58%; SVM: 55%) was found when the cross-validation folds contained subjects from all sites, indicating site effect. In conclusion, the integration of vertex-wise morphometric features and the use of the non-linear classifier did not lead to the differentiability between MDD and HC. Our results support the notion that MDD classification on this combination of features and classifiers is unfeasible. Future studies are needed to determine whether more sophisticated integration of information from other MRI modalities such as fMRI and DWI will lead to a higher performance in this diagnostic task.</p>","PeriodicalId":19008,"journal":{"name":"Molecular Psychiatry","volume":" ","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of major depressive disorder using vertex-wise brain sulcal depth, curvature, and thickness with a deep and a shallow learning model.\",\"authors\":\"Roberto Goya-Maldonado, Tracy Erwin-Grabner, Ling-Li Zeng, Christopher R K Ching, Andre Aleman, Alyssa R Amod, Zeynep Basgoze, Francesco Benedetti, Bianca Besteher, Katharina Brosch, Robin Bülow, Romain Colle, Colm G Connolly, Emmanuelle Corruble, Baptiste Couvy-Duchesne, Kathryn Cullen, Udo Dannlowski, Christopher G Davey, Annemiek Dols, Jan Ernsting, Jennifer W Evans, Lukas Fisch, Paola Fuentes-Claramonte, Ali Saffet Gonul, Ian H Gotlib, Hans J Grabe, Nynke A Groenewold, Dominik Grotegerd, Tim Hahn, J Paul Hamilton, Laura K M Han, Ben J Harrison, Tiffany C Ho, Neda Jahanshad, Alec J Jamieson, Andriana Karuk, Tilo Kircher, Bonnie Klimes-Dougan, Sheri-Michelle Koopowitz, Thomas Lancaster, Ramona Leenings, Meng Li, David E J Linden, Frank P MacMaster, David M A Mehler, Susanne Meinert, Elisa Melloni, Bryon A Mueller, Benson Mwangi, Igor Nenadić, Amar Ojha, Yasumasa Okamoto, Mardien L Oudega, Brenda W J H Penninx, Sara Poletti, Edith Pomarol-Clotet, Maria J Portella, Joaquim Radua, Elena Rodríguez-Cano, Matthew D Sacchet, Raymond Salvador, Anouk Schrantee, Kang Sim, Jair C Soares, Aleix Solanes, Dan J Stein, Frederike Stein, Aleks Stolicyn, Sophia I Thomopoulos, Yara J Toenders, Aslihan Uyar-Demir, Eduard Vieta, Yolanda Vives-Gilabert, Henry Völzke, Martin Walter, Heather C Whalley, Sarah Whittle, Nils Winter, Katharina Wittfeld, Margaret J Wright, Mon-Ju Wu, Tony T Yang, Carlos Zarate, Dick J Veltman, Lianne Schmaal, Paul M Thompson\",\"doi\":\"10.1038/s41380-025-03273-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Major depressive disorder (MDD) is a complex psychiatric disorder that affects the lives of hundreds of millions of individuals around the globe. Even today, researchers debate if morphological alterations in the brain are linked to MDD, likely due to the heterogeneity of this disorder. The application of deep learning tools to neuroimaging data, capable of capturing complex non-linear patterns, has the potential to provide diagnostic and predictive biomarkers for MDD. However, previous attempts to demarcate MDD patients and healthy controls (HC) based on segmented cortical features via linear machine learning approaches have reported low accuracies. In this study, we used globally representative data from the ENIGMA-MDD working group containing 7012 participants from 31 sites (N = 2772 MDD and N = 4240 HC), which allows a comprehensive analysis with generalizable results. Based on the hypothesis that integration of vertex-wise cortical features can improve classification performance, we evaluated the classification of a DenseNet and a Support Vector Machine (SVM), with the expectation that the former would outperform the latter. As we analyzed a multi-site sample, we additionally applied the ComBat harmonization tool to remove potential nuisance effects of site. We found that both classifiers exhibited close to chance performance (balanced accuracy DenseNet: 51%; SVM: 53%), when estimated on unseen sites. Slightly higher classification performance (balanced accuracy DenseNet: 58%; SVM: 55%) was found when the cross-validation folds contained subjects from all sites, indicating site effect. In conclusion, the integration of vertex-wise morphometric features and the use of the non-linear classifier did not lead to the differentiability between MDD and HC. Our results support the notion that MDD classification on this combination of features and classifiers is unfeasible. Future studies are needed to determine whether more sophisticated integration of information from other MRI modalities such as fMRI and DWI will lead to a higher performance in this diagnostic task.</p>\",\"PeriodicalId\":19008,\"journal\":{\"name\":\"Molecular Psychiatry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41380-025-03273-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41380-025-03273-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

重度抑郁症(MDD)是一种复杂的精神障碍,影响着全球数亿人的生活。即使在今天,研究人员仍在争论大脑的形态改变是否与重度抑郁症有关,这可能是由于这种疾病的异质性。将深度学习工具应用于神经成像数据,能够捕获复杂的非线性模式,有可能为MDD提供诊断和预测生物标志物。然而,先前尝试通过线性机器学习方法基于分割的皮质特征来划分MDD患者和健康对照(HC)的准确性较低。在这项研究中,我们使用了来自ENIGMA-MDD工作组的全球代表性数据,该工作组包含来自31个站点的7012名参与者(N = 2772 MDD和N = 4240 HC),这使得我们能够进行全面的分析,并得出具有普遍性的结果。基于基于顶点的皮质特征集成可以提高分类性能的假设,我们评估了DenseNet和支持向量机(SVM)的分类,期望前者优于后者。当我们分析一个多站点样本时,我们额外应用了ComBat harmonization工具来消除站点的潜在滋扰影响。我们发现,当对未见过的站点进行估计时,两个分类器都表现出接近机会的性能(平衡精度DenseNet: 51%; SVM: 53%)。当交叉验证折叠包含所有站点的受试者时,发现分类性能略高(平衡准确率DenseNet: 58%; SVM: 55%),表明站点效应。综上所述,顶点形态特征的整合和非线性分类器的使用并没有导致MDD和HC之间的可区分性。我们的结果支持这样的观点,即在特征和分类器的组合上进行MDD分类是不可行的。未来的研究需要确定是否更复杂地整合来自其他MRI模式(如fMRI和DWI)的信息将导致更高的诊断任务性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of major depressive disorder using vertex-wise brain sulcal depth, curvature, and thickness with a deep and a shallow learning model.

Major depressive disorder (MDD) is a complex psychiatric disorder that affects the lives of hundreds of millions of individuals around the globe. Even today, researchers debate if morphological alterations in the brain are linked to MDD, likely due to the heterogeneity of this disorder. The application of deep learning tools to neuroimaging data, capable of capturing complex non-linear patterns, has the potential to provide diagnostic and predictive biomarkers for MDD. However, previous attempts to demarcate MDD patients and healthy controls (HC) based on segmented cortical features via linear machine learning approaches have reported low accuracies. In this study, we used globally representative data from the ENIGMA-MDD working group containing 7012 participants from 31 sites (N = 2772 MDD and N = 4240 HC), which allows a comprehensive analysis with generalizable results. Based on the hypothesis that integration of vertex-wise cortical features can improve classification performance, we evaluated the classification of a DenseNet and a Support Vector Machine (SVM), with the expectation that the former would outperform the latter. As we analyzed a multi-site sample, we additionally applied the ComBat harmonization tool to remove potential nuisance effects of site. We found that both classifiers exhibited close to chance performance (balanced accuracy DenseNet: 51%; SVM: 53%), when estimated on unseen sites. Slightly higher classification performance (balanced accuracy DenseNet: 58%; SVM: 55%) was found when the cross-validation folds contained subjects from all sites, indicating site effect. In conclusion, the integration of vertex-wise morphometric features and the use of the non-linear classifier did not lead to the differentiability between MDD and HC. Our results support the notion that MDD classification on this combination of features and classifiers is unfeasible. Future studies are needed to determine whether more sophisticated integration of information from other MRI modalities such as fMRI and DWI will lead to a higher performance in this diagnostic task.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Psychiatry
Molecular Psychiatry 医学-精神病学
CiteScore
20.50
自引率
4.50%
发文量
459
审稿时长
4-8 weeks
期刊介绍: Molecular Psychiatry focuses on publishing research that aims to uncover the biological mechanisms behind psychiatric disorders and their treatment. The journal emphasizes studies that bridge pre-clinical and clinical research, covering cellular, molecular, integrative, clinical, imaging, and psychopharmacology levels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信