高熵纳米粒子的电化学合成及氧还原反应中钯银金组成空间的探索。

IF 3.1 3区 化学 Q2 CHEMISTRY, PHYSICAL
Menglong Liu, Divyansh Gautam, Christian M Clausen, Ahmad Tirmidzi, Gustav K H Wiberg, Jan Rossmeisl, Matthias Arenz
{"title":"高熵纳米粒子的电化学合成及氧还原反应中钯银金组成空间的探索。","authors":"Menglong Liu, Divyansh Gautam, Christian M Clausen, Ahmad Tirmidzi, Gustav K H Wiberg, Jan Rossmeisl, Matthias Arenz","doi":"10.1039/d5fd00095e","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-metallic alloys such as high entropy alloys (HEAs) span an extensive compositional space, potentially offering materials with enhanced activity and stability for various catalytic reactions. However, experimentally identifying the optimal composition within this vast compositional space poses significant challenges. In this study, we present a medium-throughput approach to screen the composition-activity correlation of electrodeposited multi-metallic and HEA nanoparticles. We apply the approach for exploring the Pd-Ag-Au composition subspace for the alkaline Oxygen Reduction Reaction (ORR). The Pd-Ag-Au alloy nanoparticles were synthesized electrochemically, characterized and evaluated for the ORR using a rotating disk electrode (RDE) setup. From 107 individual measurements, a composition-activity correlation model was constructed using Gaussian Process Regression (GPR), pinpointing the optimal composition around Pd<sub>85</sub>Ag<sub>1</sub>Au<sub>14</sub>. The experimental results are then compared to theoretical predictions based on the well-established descriptor approach utilizing density functional theory (DFT) calculations. While some discrepancies exist, the experimental DFT-derived models show partial overlap, validating the utility of computational screening for multi-metallic systems. This work provides valuable insights for the efficient screening of multi-metallic catalysts for catalytic applications and exemplifies advanced pathways on how to compare and analyze experimental data to simulations based on well-defined hypotheses.</p>","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12495384/pdf/","citationCount":"0","resultStr":"{\"title\":\"Electrochemical synthesis of high entropy nanoparticles and the exploration of the Pd-Ag-Au composition space for the oxygen reduction reaction.\",\"authors\":\"Menglong Liu, Divyansh Gautam, Christian M Clausen, Ahmad Tirmidzi, Gustav K H Wiberg, Jan Rossmeisl, Matthias Arenz\",\"doi\":\"10.1039/d5fd00095e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multi-metallic alloys such as high entropy alloys (HEAs) span an extensive compositional space, potentially offering materials with enhanced activity and stability for various catalytic reactions. However, experimentally identifying the optimal composition within this vast compositional space poses significant challenges. In this study, we present a medium-throughput approach to screen the composition-activity correlation of electrodeposited multi-metallic and HEA nanoparticles. We apply the approach for exploring the Pd-Ag-Au composition subspace for the alkaline Oxygen Reduction Reaction (ORR). The Pd-Ag-Au alloy nanoparticles were synthesized electrochemically, characterized and evaluated for the ORR using a rotating disk electrode (RDE) setup. From 107 individual measurements, a composition-activity correlation model was constructed using Gaussian Process Regression (GPR), pinpointing the optimal composition around Pd<sub>85</sub>Ag<sub>1</sub>Au<sub>14</sub>. The experimental results are then compared to theoretical predictions based on the well-established descriptor approach utilizing density functional theory (DFT) calculations. While some discrepancies exist, the experimental DFT-derived models show partial overlap, validating the utility of computational screening for multi-metallic systems. This work provides valuable insights for the efficient screening of multi-metallic catalysts for catalytic applications and exemplifies advanced pathways on how to compare and analyze experimental data to simulations based on well-defined hypotheses.</p>\",\"PeriodicalId\":76,\"journal\":{\"name\":\"Faraday Discussions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12495384/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Faraday Discussions\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5fd00095e\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5fd00095e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

高熵合金(HEAs)等多金属合金具有广泛的组成空间,有可能为各种催化反应提供具有增强活性和稳定性的材料。然而,在这个巨大的组合空间中,通过实验确定最佳组合构成构成了重大挑战。在这项研究中,我们提出了一种中等通量的方法来筛选电沉积的多金属和HEA纳米颗粒的组成-活性相关性。我们将该方法应用于探索碱性氧还原反应(ORR)的钯银金组成子空间。采用旋转圆盘电极(RDE)对钯银金合金纳米颗粒进行了电化学合成、表征和ORR评价。从107个单项测量数据中,利用高斯过程回归(GPR)建立了成分-活性相关模型,确定了Pd85Ag1Au14附近的最佳成分。然后将实验结果与基于利用密度泛函理论(DFT)计算的成熟描述子方法的理论预测进行比较。虽然存在一些差异,但实验dft衍生模型显示部分重叠,验证了多金属系统计算筛选的实用性。这项工作为催化应用的多金属催化剂的有效筛选提供了有价值的见解,并举例说明了如何将实验数据与基于明确假设的模拟进行比较和分析的先进途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrochemical synthesis of high entropy nanoparticles and the exploration of the Pd-Ag-Au composition space for the oxygen reduction reaction.

Multi-metallic alloys such as high entropy alloys (HEAs) span an extensive compositional space, potentially offering materials with enhanced activity and stability for various catalytic reactions. However, experimentally identifying the optimal composition within this vast compositional space poses significant challenges. In this study, we present a medium-throughput approach to screen the composition-activity correlation of electrodeposited multi-metallic and HEA nanoparticles. We apply the approach for exploring the Pd-Ag-Au composition subspace for the alkaline Oxygen Reduction Reaction (ORR). The Pd-Ag-Au alloy nanoparticles were synthesized electrochemically, characterized and evaluated for the ORR using a rotating disk electrode (RDE) setup. From 107 individual measurements, a composition-activity correlation model was constructed using Gaussian Process Regression (GPR), pinpointing the optimal composition around Pd85Ag1Au14. The experimental results are then compared to theoretical predictions based on the well-established descriptor approach utilizing density functional theory (DFT) calculations. While some discrepancies exist, the experimental DFT-derived models show partial overlap, validating the utility of computational screening for multi-metallic systems. This work provides valuable insights for the efficient screening of multi-metallic catalysts for catalytic applications and exemplifies advanced pathways on how to compare and analyze experimental data to simulations based on well-defined hypotheses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Faraday Discussions
Faraday Discussions 化学-物理化学
自引率
0.00%
发文量
259
期刊介绍: Discussion summary and research papers from discussion meetings that focus on rapidly developing areas of physical chemistry and its interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信