基于MSD法的地下室边洞盾构隧道动态水平位移评价方法

IF 5.1 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Gang Wei, Zhiyuan Mu, Yitong Li, Yongjie Qi, Guohui Feng
{"title":"基于MSD法的地下室边洞盾构隧道动态水平位移评价方法","authors":"Gang Wei,&nbsp;Zhiyuan Mu,&nbsp;Yitong Li,&nbsp;Yongjie Qi,&nbsp;Guohui Feng","doi":"10.1155/stc/5170617","DOIUrl":null,"url":null,"abstract":"<p>The impact of pit excavation on the surrounding environment is closely related to the deformation characteristics of the surrounding enclosure structure. However, most existing methods rely on calculating pit unloading stress based on the Mindlin solution, which does not adequately account for the dynamic deformation characteristics of the enclosure structure at different excavation stages and is difficult to apply for real-time assessment. This paper presents a new calculation method based on the mobilizable strength design (MSD) approach to dynamically predict the horizontal displacement of the shield tunnel adjacent to the excavation pit. By introducing dynamic evaluation of the horizontal displacement of the enclosure structure, the applicability of the traditional MSD method is enhanced. The paper compares and analyzes the differences between this method, the modified MSD (MMSD) method, the MSD method, and measured data from actual pit excavation cases. The results demonstrate that the proposed method more accurately reflects the deformation characteristics of the enclosure structure at different excavation stages and its dynamic impact on the horizontal displacement of the shield tunnel. The spatial distribution of horizontal displacement in the enclosure structure under zoned excavation is analyzed, revealing the coupling relationship between the deformation characteristics of the enclosure structure and the tunnel’s deformation response. The findings of this study provide valuable references for the safety assessment and protective measures of shield tunnels during pit excavation.</p>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/5170617","citationCount":"0","resultStr":"{\"title\":\"Dynamic Horizontal Displacement Evaluation Method of Tunnel Shield Tunnel Based on MSD Method for Basement Side Tunnels\",\"authors\":\"Gang Wei,&nbsp;Zhiyuan Mu,&nbsp;Yitong Li,&nbsp;Yongjie Qi,&nbsp;Guohui Feng\",\"doi\":\"10.1155/stc/5170617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The impact of pit excavation on the surrounding environment is closely related to the deformation characteristics of the surrounding enclosure structure. However, most existing methods rely on calculating pit unloading stress based on the Mindlin solution, which does not adequately account for the dynamic deformation characteristics of the enclosure structure at different excavation stages and is difficult to apply for real-time assessment. This paper presents a new calculation method based on the mobilizable strength design (MSD) approach to dynamically predict the horizontal displacement of the shield tunnel adjacent to the excavation pit. By introducing dynamic evaluation of the horizontal displacement of the enclosure structure, the applicability of the traditional MSD method is enhanced. The paper compares and analyzes the differences between this method, the modified MSD (MMSD) method, the MSD method, and measured data from actual pit excavation cases. The results demonstrate that the proposed method more accurately reflects the deformation characteristics of the enclosure structure at different excavation stages and its dynamic impact on the horizontal displacement of the shield tunnel. The spatial distribution of horizontal displacement in the enclosure structure under zoned excavation is analyzed, revealing the coupling relationship between the deformation characteristics of the enclosure structure and the tunnel’s deformation response. The findings of this study provide valuable references for the safety assessment and protective measures of shield tunnels during pit excavation.</p>\",\"PeriodicalId\":49471,\"journal\":{\"name\":\"Structural Control & Health Monitoring\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/5170617\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control & Health Monitoring\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/stc/5170617\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/5170617","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

基坑开挖对周边环境的影响与周边围护结构的变形特性密切相关。然而,现有的方法大多是基于Mindlin解计算基坑卸载应力,不能充分考虑围护结构在不同开挖阶段的动态变形特征,难以应用于实时评估。本文提出了一种基于可动强度设计(MSD)法的盾构隧道水平位移动态预测方法。通过引入围护结构水平位移的动态评估,提高了传统MSD方法的适用性。对比分析了该方法与改进的MSD (MMSD)法、MSD法以及实际基坑开挖实测数据的差异。结果表明,该方法更准确地反映了盾构隧道不同开挖阶段围护结构的变形特征及其对盾构隧道水平位移的动力影响。分析了分区开挖下围护结构水平位移的空间分布,揭示了围护结构变形特征与隧道变形响应之间的耦合关系。研究结果为盾构隧道基坑开挖时的安全评价和防护措施提供了有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dynamic Horizontal Displacement Evaluation Method of Tunnel Shield Tunnel Based on MSD Method for Basement Side Tunnels

Dynamic Horizontal Displacement Evaluation Method of Tunnel Shield Tunnel Based on MSD Method for Basement Side Tunnels

The impact of pit excavation on the surrounding environment is closely related to the deformation characteristics of the surrounding enclosure structure. However, most existing methods rely on calculating pit unloading stress based on the Mindlin solution, which does not adequately account for the dynamic deformation characteristics of the enclosure structure at different excavation stages and is difficult to apply for real-time assessment. This paper presents a new calculation method based on the mobilizable strength design (MSD) approach to dynamically predict the horizontal displacement of the shield tunnel adjacent to the excavation pit. By introducing dynamic evaluation of the horizontal displacement of the enclosure structure, the applicability of the traditional MSD method is enhanced. The paper compares and analyzes the differences between this method, the modified MSD (MMSD) method, the MSD method, and measured data from actual pit excavation cases. The results demonstrate that the proposed method more accurately reflects the deformation characteristics of the enclosure structure at different excavation stages and its dynamic impact on the horizontal displacement of the shield tunnel. The spatial distribution of horizontal displacement in the enclosure structure under zoned excavation is analyzed, revealing the coupling relationship between the deformation characteristics of the enclosure structure and the tunnel’s deformation response. The findings of this study provide valuable references for the safety assessment and protective measures of shield tunnels during pit excavation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Control & Health Monitoring
Structural Control & Health Monitoring 工程技术-工程:土木
CiteScore
9.50
自引率
13.00%
发文量
234
审稿时长
8 months
期刊介绍: The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications. Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics. Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信