基于大模型增强稀疏注意视觉变压器的无线通信网络智能英语教学视频流量分类

IF 0.5 Q4 TELECOMMUNICATIONS
Jinjin Liu
{"title":"基于大模型增强稀疏注意视觉变压器的无线通信网络智能英语教学视频流量分类","authors":"Jinjin Liu","doi":"10.1002/itl2.70153","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This letter presents a novel framework combining large language models with a sparse attention vision transformer (SA-ViT) to classify English teaching video traffic in wireless networks. Our approach analyzes both visual content frames and extracted English speech transcripts to identify educational content types, difficulty levels, and priority requirements. The proposed model transforms video frames into visual patches while simultaneously processing English linguistic content through pre-trained language models, enabling an understanding of educational multimedia traffic. Through extensive evaluation of real-world English teaching video datasets transmitted over wireless networks, our SA-ViT framework achieves 97.5% classification accuracy, representing an 11.3% improvement over conventional video traffic classification methods. The results demonstrate effective integration of visual understanding, English language comprehension, and wireless network optimization for enhanced educational content delivery.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 6","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent English Teaching Video Traffic Classification in Wireless Communication Networks via Large Model-Enhanced Sparse Attention Vision Transformer\",\"authors\":\"Jinjin Liu\",\"doi\":\"10.1002/itl2.70153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This letter presents a novel framework combining large language models with a sparse attention vision transformer (SA-ViT) to classify English teaching video traffic in wireless networks. Our approach analyzes both visual content frames and extracted English speech transcripts to identify educational content types, difficulty levels, and priority requirements. The proposed model transforms video frames into visual patches while simultaneously processing English linguistic content through pre-trained language models, enabling an understanding of educational multimedia traffic. Through extensive evaluation of real-world English teaching video datasets transmitted over wireless networks, our SA-ViT framework achieves 97.5% classification accuracy, representing an 11.3% improvement over conventional video traffic classification methods. The results demonstrate effective integration of visual understanding, English language comprehension, and wireless network optimization for enhanced educational content delivery.</p>\\n </div>\",\"PeriodicalId\":100725,\"journal\":{\"name\":\"Internet Technology Letters\",\"volume\":\"8 6\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Technology Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种结合大型语言模型和稀疏注意力视觉转换器(SA-ViT)的新框架,用于对无线网络中的英语教学视频流量进行分类。我们的方法分析视觉内容框架和提取的英语演讲文本,以确定教育内容类型、难度等级和优先级要求。该模型将视频帧转换为视觉片段,同时通过预训练的语言模型处理英语语言内容,从而能够理解教育多媒体流量。通过对无线网络传输的真实英语教学视频数据集的广泛评估,我们的SA-ViT框架实现了97.5%的分类准确率,比传统的视频流量分类方法提高了11.3%。结果表明,视觉理解、英语语言理解和无线网络优化有效地整合在一起,以增强教育内容的传递。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Intelligent English Teaching Video Traffic Classification in Wireless Communication Networks via Large Model-Enhanced Sparse Attention Vision Transformer

Intelligent English Teaching Video Traffic Classification in Wireless Communication Networks via Large Model-Enhanced Sparse Attention Vision Transformer

This letter presents a novel framework combining large language models with a sparse attention vision transformer (SA-ViT) to classify English teaching video traffic in wireless networks. Our approach analyzes both visual content frames and extracted English speech transcripts to identify educational content types, difficulty levels, and priority requirements. The proposed model transforms video frames into visual patches while simultaneously processing English linguistic content through pre-trained language models, enabling an understanding of educational multimedia traffic. Through extensive evaluation of real-world English teaching video datasets transmitted over wireless networks, our SA-ViT framework achieves 97.5% classification accuracy, representing an 11.3% improvement over conventional video traffic classification methods. The results demonstrate effective integration of visual understanding, English language comprehension, and wireless network optimization for enhanced educational content delivery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信