汽车雷达传感器的实时干扰抑制

Yubo Wu;Alexander Li;Wenjing Lou;Y. Thomas Hou
{"title":"汽车雷达传感器的实时干扰抑制","authors":"Yubo Wu;Alexander Li;Wenjing Lou;Y. Thomas Hou","doi":"10.1109/JSAS.2025.3609274","DOIUrl":null,"url":null,"abstract":"Automotive radar sensor plays a crucial role in advanced driver assistance systems. As radar technology becomes increasingly common in vehicles, radar-to-radar interference poses a significant challenge, leading to a reduction in target detection performance. It is essential for an interference mitigation algorithm to effectively reduce this interference under dynamic driving conditions while adhering to strict processing time requirements. In this article, we present Soteria—a real-time interference mitigation algorithm for frequency modulated continuous wave radar systems, leveraging compressed sensing techniques. Soteria identifies interference by exploiting the sparsity of signals in the frequency-time domain, then separates the desired signal from interference using the orthogonal matching pursuit (OMP) algorithm. Additionally, Soteria utilizes the inherent correlation between input data from neighboring time frames to reduce the search space for the OMP algorithm. To further enhance processing speed, Soteria is implemented using a GPU-based parallel computing approach. Simulation results indicate that Soteria can achieve <inline-formula><tex-math>$\\sim$</tex-math></inline-formula>1 ms processing time, outperforming state-of-the-art methods in target detection accuracy.","PeriodicalId":100622,"journal":{"name":"IEEE Journal of Selected Areas in Sensors","volume":"2 ","pages":"290-302"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11159154","citationCount":"0","resultStr":"{\"title\":\"Real-Time Interference Mitigation for Automotive Radar Sensor\",\"authors\":\"Yubo Wu;Alexander Li;Wenjing Lou;Y. Thomas Hou\",\"doi\":\"10.1109/JSAS.2025.3609274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automotive radar sensor plays a crucial role in advanced driver assistance systems. As radar technology becomes increasingly common in vehicles, radar-to-radar interference poses a significant challenge, leading to a reduction in target detection performance. It is essential for an interference mitigation algorithm to effectively reduce this interference under dynamic driving conditions while adhering to strict processing time requirements. In this article, we present Soteria—a real-time interference mitigation algorithm for frequency modulated continuous wave radar systems, leveraging compressed sensing techniques. Soteria identifies interference by exploiting the sparsity of signals in the frequency-time domain, then separates the desired signal from interference using the orthogonal matching pursuit (OMP) algorithm. Additionally, Soteria utilizes the inherent correlation between input data from neighboring time frames to reduce the search space for the OMP algorithm. To further enhance processing speed, Soteria is implemented using a GPU-based parallel computing approach. Simulation results indicate that Soteria can achieve <inline-formula><tex-math>$\\\\sim$</tex-math></inline-formula>1 ms processing time, outperforming state-of-the-art methods in target detection accuracy.\",\"PeriodicalId\":100622,\"journal\":{\"name\":\"IEEE Journal of Selected Areas in Sensors\",\"volume\":\"2 \",\"pages\":\"290-302\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11159154\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Areas in Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11159154/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Areas in Sensors","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11159154/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

汽车雷达传感器在高级驾驶辅助系统中起着至关重要的作用。随着雷达技术在车辆中越来越普遍,雷达对雷达干扰带来了重大挑战,导致目标探测性能下降。在满足严格的处理时间要求的情况下,有效地减少动态驾驶条件下的干扰是干扰缓解算法的关键。在本文中,我们提出了soteria -一种用于调频连续波雷达系统的实时干扰缓解算法,利用压缩感知技术。Soteria通过利用信号在频域的稀疏性来识别干扰,然后使用正交匹配追踪(OMP)算法将期望的信号从干扰中分离出来。此外,Soteria利用来自相邻时间框架的输入数据之间的内在相关性来减少OMP算法的搜索空间。为了进一步提高处理速度,Soteria使用基于gpu的并行计算方法实现。仿真结果表明,Soteria的处理时间可以达到$ $1 ms,在目标检测精度方面优于目前最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-Time Interference Mitigation for Automotive Radar Sensor
Automotive radar sensor plays a crucial role in advanced driver assistance systems. As radar technology becomes increasingly common in vehicles, radar-to-radar interference poses a significant challenge, leading to a reduction in target detection performance. It is essential for an interference mitigation algorithm to effectively reduce this interference under dynamic driving conditions while adhering to strict processing time requirements. In this article, we present Soteria—a real-time interference mitigation algorithm for frequency modulated continuous wave radar systems, leveraging compressed sensing techniques. Soteria identifies interference by exploiting the sparsity of signals in the frequency-time domain, then separates the desired signal from interference using the orthogonal matching pursuit (OMP) algorithm. Additionally, Soteria utilizes the inherent correlation between input data from neighboring time frames to reduce the search space for the OMP algorithm. To further enhance processing speed, Soteria is implemented using a GPU-based parallel computing approach. Simulation results indicate that Soteria can achieve $\sim$1 ms processing time, outperforming state-of-the-art methods in target detection accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信