用Tile CNN和TICA池鉴别大麻和酒精步态障碍

IF 2.9 Q3 ENGINEERING, BIOMEDICAL
Ruojun Li;Samuel Chibuoyim Uche;Emmanuel Agu;Kristin Grimone;Debra S. Herman;Jane Metrik;Ana M. Abrantes;Michael D. Stein
{"title":"用Tile CNN和TICA池鉴别大麻和酒精步态障碍","authors":"Ruojun Li;Samuel Chibuoyim Uche;Emmanuel Agu;Kristin Grimone;Debra S. Herman;Jane Metrik;Ana M. Abrantes;Michael D. Stein","doi":"10.1109/OJEMB.2025.3607556","DOIUrl":null,"url":null,"abstract":"<italic>Goal:</i> To investigate whether machine learning analyses of smartphone sensor data can discriminate whether a subject consumed alcohol or marijuana from their gait. <italic>Methods:</i> Using first-of-a-kind impaired gait datasets, we propose <italic>MariaGait</i>, a novel deep learning approach to distinguish between marijuana and alcohol impairment. Subjects' time-series smartphone accelerometer and gyroscope sensor gait data are first encoded into Gramian Angular Field (GAF) images that are then classified using a tiled Convolutional Neural Network (CNN) with TICA pooling. To mitigate the insufficiency of positively labeled alcohol and marijuana instances, the tiled CNN was pre-trained on sober gait samples that were more abundant. <italic>Results:</i> <italic>MariaGait</i> achieved an accuracy of 94.61%, F1 score of 88.61%, and 94.33% ROC AUC score in classifying whether the subject consumed alcohol or marijuana, outperforming baseline models including Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM), Multi-head CNN and Multi-head LSTM, Random Forest and Support Vector Machines (SVM)). <italic>Conclusions:</i> Our results demonstrate that <italic>MariaGait</i> could be a practical, non-invasive approach to determine which substance a subject is impaired by from their gait.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"6 ","pages":"540-548"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11153826","citationCount":"0","resultStr":"{\"title\":\"Discriminating Between Marijuana and Alcohol Gait Impairments Using Tile CNN With TICA Pooling\",\"authors\":\"Ruojun Li;Samuel Chibuoyim Uche;Emmanuel Agu;Kristin Grimone;Debra S. Herman;Jane Metrik;Ana M. Abrantes;Michael D. Stein\",\"doi\":\"10.1109/OJEMB.2025.3607556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<italic>Goal:</i> To investigate whether machine learning analyses of smartphone sensor data can discriminate whether a subject consumed alcohol or marijuana from their gait. <italic>Methods:</i> Using first-of-a-kind impaired gait datasets, we propose <italic>MariaGait</i>, a novel deep learning approach to distinguish between marijuana and alcohol impairment. Subjects' time-series smartphone accelerometer and gyroscope sensor gait data are first encoded into Gramian Angular Field (GAF) images that are then classified using a tiled Convolutional Neural Network (CNN) with TICA pooling. To mitigate the insufficiency of positively labeled alcohol and marijuana instances, the tiled CNN was pre-trained on sober gait samples that were more abundant. <italic>Results:</i> <italic>MariaGait</i> achieved an accuracy of 94.61%, F1 score of 88.61%, and 94.33% ROC AUC score in classifying whether the subject consumed alcohol or marijuana, outperforming baseline models including Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM), Multi-head CNN and Multi-head LSTM, Random Forest and Support Vector Machines (SVM)). <italic>Conclusions:</i> Our results demonstrate that <italic>MariaGait</i> could be a practical, non-invasive approach to determine which substance a subject is impaired by from their gait.\",\"PeriodicalId\":33825,\"journal\":{\"name\":\"IEEE Open Journal of Engineering in Medicine and Biology\",\"volume\":\"6 \",\"pages\":\"540-548\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11153826\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Engineering in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11153826/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11153826/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:研究智能手机传感器数据的机器学习分析能否从步态中区分受试者是饮酒还是吸食大麻。方法:利用首个受损步态数据集,我们提出了MariaGait,一种新的深度学习方法来区分大麻和酒精损伤。受试者的时间序列智能手机加速度计和陀螺仪传感器步态数据首先被编码成格拉曼角场(GAF)图像,然后使用带有TICA池的平铺卷积神经网络(CNN)进行分类。为了减轻正标记的酒精和大麻实例的不足,对平铺的CNN进行了更丰富的清醒步态样本的预训练。结果:MariaGait对被试是否饮酒或大麻的分类准确率为94.61%,F1得分为88.61%,ROC AUC得分为94.33%,优于多层感知器(MLP)、长短期记忆(LSTM)、多头CNN和多头LSTM、随机森林和支持向量机(SVM)等基线模型。结论:我们的研究结果表明,MariaGait可能是一种实用的、非侵入性的方法,可以从受试者的步态中确定哪种物质受损。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discriminating Between Marijuana and Alcohol Gait Impairments Using Tile CNN With TICA Pooling
Goal: To investigate whether machine learning analyses of smartphone sensor data can discriminate whether a subject consumed alcohol or marijuana from their gait. Methods: Using first-of-a-kind impaired gait datasets, we propose MariaGait, a novel deep learning approach to distinguish between marijuana and alcohol impairment. Subjects' time-series smartphone accelerometer and gyroscope sensor gait data are first encoded into Gramian Angular Field (GAF) images that are then classified using a tiled Convolutional Neural Network (CNN) with TICA pooling. To mitigate the insufficiency of positively labeled alcohol and marijuana instances, the tiled CNN was pre-trained on sober gait samples that were more abundant. Results: MariaGait achieved an accuracy of 94.61%, F1 score of 88.61%, and 94.33% ROC AUC score in classifying whether the subject consumed alcohol or marijuana, outperforming baseline models including Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM), Multi-head CNN and Multi-head LSTM, Random Forest and Support Vector Machines (SVM)). Conclusions: Our results demonstrate that MariaGait could be a practical, non-invasive approach to determine which substance a subject is impaired by from their gait.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.50
自引率
3.40%
发文量
20
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信