多irs辅助AAV-NOMA网络的可实现速率最大化

IF 9.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Dingcheng Yang;Kangqing Wu;Yu Xu;Fahui Wu;Tiankui Zhang
{"title":"多irs辅助AAV-NOMA网络的可实现速率最大化","authors":"Dingcheng Yang;Kangqing Wu;Yu Xu;Fahui Wu;Tiankui Zhang","doi":"10.1109/TMC.2025.3586768","DOIUrl":null,"url":null,"abstract":"The evolution towards Internet of Things (IoT) in the forthcoming sixth generation (6G) is facing massive amounts of transmitted data and harsh wireless transmission environment, which severely degrade the quality of communication. To overcome these difficulties, a novel multiple intelligent reflecting surfaces (IRSs) assisted autonomous aerial vehicle (AAV) network framework with non-orthogonal multiple access (NOMA) is proposed in this article, where the AAV applies the NOMA scheme to deliver the information to the ground users assisted by multiple IRSs. We aim to maximize the achievable rate of the considered network while guaranteeing the minimum communication rate of each user, by jointly optimizing the multi-IRS phase shifts, AAV transmit power, AAV trajectory, and NOMA decoding order. To handle the coupled variables and integer constraints, we decompose the original problem into three subproblems based on the block coordinate descent (BCD) framework. Specifically, we first obtain the multi-IRS phase shifts by applying the semidefinite relaxation (SDR) technique. Next, the AAV transmit power allocation is derived by exploiting the concave convex procedure (CCCP) method. The AAV trajectory and NOMA decoding order are finally obtained by invoking the penalty-based method and the successive convex approximation (SCA) technique. Based on these, an alternating optimization algorithm is proposed. The numerical results show that: 1) the NOMA scheme enhances the utilization of the spectrum and enhances the access capacity of the communication system; 2) the multi-IRS cooperative structure increases the reflective channels and effectively improves the air-ground transmission environment, thus enhancing the system achievable rate; 3) the proposed multi-IRS assisted AAV NOMA algorithm achieves a significant network rate improvement compared to other benchmark schemes.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 11","pages":"12580-12594"},"PeriodicalIF":9.2000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achievable Rate Maximization for Multi-IRS Assisted AAV-NOMA Networks\",\"authors\":\"Dingcheng Yang;Kangqing Wu;Yu Xu;Fahui Wu;Tiankui Zhang\",\"doi\":\"10.1109/TMC.2025.3586768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The evolution towards Internet of Things (IoT) in the forthcoming sixth generation (6G) is facing massive amounts of transmitted data and harsh wireless transmission environment, which severely degrade the quality of communication. To overcome these difficulties, a novel multiple intelligent reflecting surfaces (IRSs) assisted autonomous aerial vehicle (AAV) network framework with non-orthogonal multiple access (NOMA) is proposed in this article, where the AAV applies the NOMA scheme to deliver the information to the ground users assisted by multiple IRSs. We aim to maximize the achievable rate of the considered network while guaranteeing the minimum communication rate of each user, by jointly optimizing the multi-IRS phase shifts, AAV transmit power, AAV trajectory, and NOMA decoding order. To handle the coupled variables and integer constraints, we decompose the original problem into three subproblems based on the block coordinate descent (BCD) framework. Specifically, we first obtain the multi-IRS phase shifts by applying the semidefinite relaxation (SDR) technique. Next, the AAV transmit power allocation is derived by exploiting the concave convex procedure (CCCP) method. The AAV trajectory and NOMA decoding order are finally obtained by invoking the penalty-based method and the successive convex approximation (SCA) technique. Based on these, an alternating optimization algorithm is proposed. The numerical results show that: 1) the NOMA scheme enhances the utilization of the spectrum and enhances the access capacity of the communication system; 2) the multi-IRS cooperative structure increases the reflective channels and effectively improves the air-ground transmission environment, thus enhancing the system achievable rate; 3) the proposed multi-IRS assisted AAV NOMA algorithm achieves a significant network rate improvement compared to other benchmark schemes.\",\"PeriodicalId\":50389,\"journal\":{\"name\":\"IEEE Transactions on Mobile Computing\",\"volume\":\"24 11\",\"pages\":\"12580-12594\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11072387/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11072387/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

即将到来的第六代(6G)向物联网(IoT)的演进面临着海量传输数据和恶劣的无线传输环境,严重降低了通信质量。为了克服这些困难,本文提出了一种新型的非正交多址(NOMA)多智能反射面辅助自主飞行器(AAV)网络框架,其中AAV采用NOMA方案在多个红外反射面辅助下向地面用户传递信息。我们通过联合优化多irs相移、AAV发射功率、AAV轨迹和NOMA解码顺序,在保证每个用户最小通信速率的同时,使所考虑的网络的可实现速率最大化。为了处理耦合变量和整数约束,我们基于块坐标下降(BCD)框架将原问题分解为三个子问题。具体来说,我们首先利用半定松弛(SDR)技术获得了多irs相移。其次,利用凹凸过程(CCCP)方法推导了AAV发射功率分配。通过调用基于惩罚的方法和逐次凸逼近(SCA)技术,最终获得AAV轨迹和NOMA解码顺序。在此基础上,提出了一种交替优化算法。数值结果表明:1)NOMA方案提高了频谱利用率,提高了通信系统的接入能力;2)多irs协同结构增加了反射通道,有效改善了地空传输环境,提高了系统可达率;3)与其他基准方案相比,本文提出的多irs辅助AAV NOMA算法实现了显著的网络速率提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Achievable Rate Maximization for Multi-IRS Assisted AAV-NOMA Networks
The evolution towards Internet of Things (IoT) in the forthcoming sixth generation (6G) is facing massive amounts of transmitted data and harsh wireless transmission environment, which severely degrade the quality of communication. To overcome these difficulties, a novel multiple intelligent reflecting surfaces (IRSs) assisted autonomous aerial vehicle (AAV) network framework with non-orthogonal multiple access (NOMA) is proposed in this article, where the AAV applies the NOMA scheme to deliver the information to the ground users assisted by multiple IRSs. We aim to maximize the achievable rate of the considered network while guaranteeing the minimum communication rate of each user, by jointly optimizing the multi-IRS phase shifts, AAV transmit power, AAV trajectory, and NOMA decoding order. To handle the coupled variables and integer constraints, we decompose the original problem into three subproblems based on the block coordinate descent (BCD) framework. Specifically, we first obtain the multi-IRS phase shifts by applying the semidefinite relaxation (SDR) technique. Next, the AAV transmit power allocation is derived by exploiting the concave convex procedure (CCCP) method. The AAV trajectory and NOMA decoding order are finally obtained by invoking the penalty-based method and the successive convex approximation (SCA) technique. Based on these, an alternating optimization algorithm is proposed. The numerical results show that: 1) the NOMA scheme enhances the utilization of the spectrum and enhances the access capacity of the communication system; 2) the multi-IRS cooperative structure increases the reflective channels and effectively improves the air-ground transmission environment, thus enhancing the system achievable rate; 3) the proposed multi-IRS assisted AAV NOMA algorithm achieves a significant network rate improvement compared to other benchmark schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信