{"title":"RF-DEGO:一种非均匀节点分布和障碍环境下的距离自由定位算法","authors":"Haibin Sun;Yongzheng Zhang","doi":"10.1109/TMC.2025.3586636","DOIUrl":null,"url":null,"abstract":"Range-free localization algorithms have attracted considerable attention for outdoor wireless sensor network (WSN) positioning because they are less susceptible to environmental factors when estimating inter node distances and require only a few beacon nodes with known locations to rapidly determine all node positions. Among these, the connectivity based DV Hop algorithm has become widely used due to its simplicity and ease of implementation. However, its localization accuracy is limited and it is easily degraded by non uniform node distributions and obstacle environments. To address these shortcomings, this paper proposes a novel range free localization algorithm (RF-DEGO). First, a new distance estimation formula is derived from node connectivity and the probability distribution of distances. Next, the estimated distances are corrected using the local node density along communication paths, and paths identified as detouring around obstacles receive a further correction. Finally, an enhanced hierarchical Grey Wolf Optimization algorithm computes the node positions. Extensive simulation experiments under various network scenarios and parameter settings show that the proposed algorithm outperforms several existing localization methods in both accuracy and computation time, demonstrating superior overall performance and strong competitiveness.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 11","pages":"12517-12532"},"PeriodicalIF":9.2000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RF-DEGO: A Range Free Localization Algorithm for Non Uniform Node Distributions and Obstacle Environments\",\"authors\":\"Haibin Sun;Yongzheng Zhang\",\"doi\":\"10.1109/TMC.2025.3586636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Range-free localization algorithms have attracted considerable attention for outdoor wireless sensor network (WSN) positioning because they are less susceptible to environmental factors when estimating inter node distances and require only a few beacon nodes with known locations to rapidly determine all node positions. Among these, the connectivity based DV Hop algorithm has become widely used due to its simplicity and ease of implementation. However, its localization accuracy is limited and it is easily degraded by non uniform node distributions and obstacle environments. To address these shortcomings, this paper proposes a novel range free localization algorithm (RF-DEGO). First, a new distance estimation formula is derived from node connectivity and the probability distribution of distances. Next, the estimated distances are corrected using the local node density along communication paths, and paths identified as detouring around obstacles receive a further correction. Finally, an enhanced hierarchical Grey Wolf Optimization algorithm computes the node positions. Extensive simulation experiments under various network scenarios and parameter settings show that the proposed algorithm outperforms several existing localization methods in both accuracy and computation time, demonstrating superior overall performance and strong competitiveness.\",\"PeriodicalId\":50389,\"journal\":{\"name\":\"IEEE Transactions on Mobile Computing\",\"volume\":\"24 11\",\"pages\":\"12517-12532\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11072367/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11072367/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
RF-DEGO: A Range Free Localization Algorithm for Non Uniform Node Distributions and Obstacle Environments
Range-free localization algorithms have attracted considerable attention for outdoor wireless sensor network (WSN) positioning because they are less susceptible to environmental factors when estimating inter node distances and require only a few beacon nodes with known locations to rapidly determine all node positions. Among these, the connectivity based DV Hop algorithm has become widely used due to its simplicity and ease of implementation. However, its localization accuracy is limited and it is easily degraded by non uniform node distributions and obstacle environments. To address these shortcomings, this paper proposes a novel range free localization algorithm (RF-DEGO). First, a new distance estimation formula is derived from node connectivity and the probability distribution of distances. Next, the estimated distances are corrected using the local node density along communication paths, and paths identified as detouring around obstacles receive a further correction. Finally, an enhanced hierarchical Grey Wolf Optimization algorithm computes the node positions. Extensive simulation experiments under various network scenarios and parameter settings show that the proposed algorithm outperforms several existing localization methods in both accuracy and computation time, demonstrating superior overall performance and strong competitiveness.
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.