LSNN模型:一种基于轻量级尖峰神经网络的可穿戴EEG传感器抑郁分类模型

IF 9.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Qinglin Zhao;Lixin Zhang;Haojie Zhang;Hua Jiang;Kunbo Cui;Zhongqing Wu;Jingyu Liu;Mingqi Zhao;Fuze Tian;Bin Hu
{"title":"LSNN模型:一种基于轻量级尖峰神经网络的可穿戴EEG传感器抑郁分类模型","authors":"Qinglin Zhao;Lixin Zhang;Haojie Zhang;Hua Jiang;Kunbo Cui;Zhongqing Wu;Jingyu Liu;Mingqi Zhao;Fuze Tian;Bin Hu","doi":"10.1109/TMC.2025.3586591","DOIUrl":null,"url":null,"abstract":"Depression detection via wearable Electroencephalogram (EEG) sensor-assisted diagnosis system demands computationally efficient models compatible with resource-constrained edge devices. Spiking Neural Networks (SNNs) offer inherent advantages for processing the spatio-temporal patterns of EEG through event-driven neuromorphic computing. In this study, we innovatively present LSNNet, a lightweight SNN model specifically designed for wearable EEG sensors. The model exhibits low computational complexity with 7.18 K parameters and 67.68 M Floating-Point Operations (FLOPs). It requires only 246.88 KB of Random Access Memory (RAM) and 57.33 KB of Read-Only Memory (ROM) for on-board execution, and has been validated on both the single-core STM32U535CET6 and the multi-core GAP8 microcontrollers. Despite its minimal computational and memory requirements, LSNNet achieves impressive performance metrics, with a classification accuracy of 89.2%, specificity of 92.4%, and sensitivity of 86.4% in independent tests conducted on EEG data collected from 73 depressed patients and 108 healthy controls using our three-lead EEG sensor. Especially, when running on the GAP8 microcontroller, the LSNNet model has a low power consumption of 21.43 mW and a satisfactory inference time of 0.63 s while maintaining a classification accuracy of 87.5% (only with a reduction of 1.98% ). These results underscore the potential of integrating wearable EEG sensors with the LSNNet model for depression detection in the Internet of Things (IoT) era.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 11","pages":"12640-12654"},"PeriodicalIF":9.2000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LSNN Model: A Lightweight Spiking Neural Network-Based Depression Classification Model for Wearable EEG Sensors\",\"authors\":\"Qinglin Zhao;Lixin Zhang;Haojie Zhang;Hua Jiang;Kunbo Cui;Zhongqing Wu;Jingyu Liu;Mingqi Zhao;Fuze Tian;Bin Hu\",\"doi\":\"10.1109/TMC.2025.3586591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Depression detection via wearable Electroencephalogram (EEG) sensor-assisted diagnosis system demands computationally efficient models compatible with resource-constrained edge devices. Spiking Neural Networks (SNNs) offer inherent advantages for processing the spatio-temporal patterns of EEG through event-driven neuromorphic computing. In this study, we innovatively present LSNNet, a lightweight SNN model specifically designed for wearable EEG sensors. The model exhibits low computational complexity with 7.18 K parameters and 67.68 M Floating-Point Operations (FLOPs). It requires only 246.88 KB of Random Access Memory (RAM) and 57.33 KB of Read-Only Memory (ROM) for on-board execution, and has been validated on both the single-core STM32U535CET6 and the multi-core GAP8 microcontrollers. Despite its minimal computational and memory requirements, LSNNet achieves impressive performance metrics, with a classification accuracy of 89.2%, specificity of 92.4%, and sensitivity of 86.4% in independent tests conducted on EEG data collected from 73 depressed patients and 108 healthy controls using our three-lead EEG sensor. Especially, when running on the GAP8 microcontroller, the LSNNet model has a low power consumption of 21.43 mW and a satisfactory inference time of 0.63 s while maintaining a classification accuracy of 87.5% (only with a reduction of 1.98% ). These results underscore the potential of integrating wearable EEG sensors with the LSNNet model for depression detection in the Internet of Things (IoT) era.\",\"PeriodicalId\":50389,\"journal\":{\"name\":\"IEEE Transactions on Mobile Computing\",\"volume\":\"24 11\",\"pages\":\"12640-12654\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11072318/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11072318/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

基于可穿戴式脑电图传感器辅助诊断系统的抑郁症检测需要与资源受限的边缘设备兼容的高效计算模型。脉冲神经网络(SNNs)通过事件驱动的神经形态计算,在处理脑电时空模式方面具有固有的优势。在这项研究中,我们创新地提出了LSNNet,一种专为可穿戴EEG传感器设计的轻量级SNN模型。该模型具有较低的计算复杂度,参数为7.18 K,浮点运算次数为67.68 M。它只需要246.88 KB的随机存取存储器(RAM)和57.33 KB的只读存储器(ROM)用于板载执行,并且已经在单核STM32U535CET6和多核GAP8微控制器上进行了验证。尽管LSNNet的计算量和内存需求很小,但在使用我们的三导联脑电图传感器收集的73名抑郁症患者和108名健康对照者的脑电图数据进行的独立测试中,LSNNet的分类准确率为89.2%,特异性为92.4%,灵敏度为86.4%,取得了令人印象深刻的性能指标。特别是,在GAP8微控制器上运行时,LSNNet模型具有21.43 mW的低功耗和0.63 s的令人满意的推理时间,同时保持87.5%的分类精度(仅降低1.98%)。这些结果强调了将可穿戴脑电图传感器与LSNNet模型集成在物联网(IoT)时代的抑郁症检测中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LSNN Model: A Lightweight Spiking Neural Network-Based Depression Classification Model for Wearable EEG Sensors
Depression detection via wearable Electroencephalogram (EEG) sensor-assisted diagnosis system demands computationally efficient models compatible with resource-constrained edge devices. Spiking Neural Networks (SNNs) offer inherent advantages for processing the spatio-temporal patterns of EEG through event-driven neuromorphic computing. In this study, we innovatively present LSNNet, a lightweight SNN model specifically designed for wearable EEG sensors. The model exhibits low computational complexity with 7.18 K parameters and 67.68 M Floating-Point Operations (FLOPs). It requires only 246.88 KB of Random Access Memory (RAM) and 57.33 KB of Read-Only Memory (ROM) for on-board execution, and has been validated on both the single-core STM32U535CET6 and the multi-core GAP8 microcontrollers. Despite its minimal computational and memory requirements, LSNNet achieves impressive performance metrics, with a classification accuracy of 89.2%, specificity of 92.4%, and sensitivity of 86.4% in independent tests conducted on EEG data collected from 73 depressed patients and 108 healthy controls using our three-lead EEG sensor. Especially, when running on the GAP8 microcontroller, the LSNNet model has a low power consumption of 21.43 mW and a satisfactory inference time of 0.63 s while maintaining a classification accuracy of 87.5% (only with a reduction of 1.98% ). These results underscore the potential of integrating wearable EEG sensors with the LSNNet model for depression detection in the Internet of Things (IoT) era.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信