{"title":"低-高负荷下直接无环图分类账的性能分析","authors":"Qingwen Wei;Shuping Dang;Zhihui Ge;Xiangcheng Li;Zhenrong Zhang","doi":"10.1109/TMC.2025.3586668","DOIUrl":null,"url":null,"abstract":"Direct acyclic graph (DAG)-based ledgers and distributed consensus algorithms have been proposed for use in the Internet of Things (IoT). The DAG-based ledgers have many advantages over single-chain blockchains, such as low resource consumption, low transaction fee, high transaction throughput, and short confirmation delay. However, the scalability of the DAG consensus has not been comprehensively verified on a large scale. This paper explores the scalability of DAG consensus within the low-to-high load regime (L2HR) using the tangle model, where L2HR characterizes the transition from a phase of low network load to another phase of high network load. In particular, we determine the average number of tips in the tangle in L2HR when adopting the uniform random tip selection (URTS) and rigorously prove that using the tangle model, the average number of tips at the end of L2HR converges to a constant. We also analyze the probability that a transaction in L2HR becomes an abandoned tip, the approximate average time required for the network load to transition from low load regime (LR) to high load regime (HR), and the average time required for a tip being approved for the first time in L2HR. All analytics are verified by numerical simulations.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 11","pages":"12441-12455"},"PeriodicalIF":9.2000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Analysis of Direct Acyclic Graph-Based Ledgers in Low-to-High Load Regime\",\"authors\":\"Qingwen Wei;Shuping Dang;Zhihui Ge;Xiangcheng Li;Zhenrong Zhang\",\"doi\":\"10.1109/TMC.2025.3586668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Direct acyclic graph (DAG)-based ledgers and distributed consensus algorithms have been proposed for use in the Internet of Things (IoT). The DAG-based ledgers have many advantages over single-chain blockchains, such as low resource consumption, low transaction fee, high transaction throughput, and short confirmation delay. However, the scalability of the DAG consensus has not been comprehensively verified on a large scale. This paper explores the scalability of DAG consensus within the low-to-high load regime (L2HR) using the tangle model, where L2HR characterizes the transition from a phase of low network load to another phase of high network load. In particular, we determine the average number of tips in the tangle in L2HR when adopting the uniform random tip selection (URTS) and rigorously prove that using the tangle model, the average number of tips at the end of L2HR converges to a constant. We also analyze the probability that a transaction in L2HR becomes an abandoned tip, the approximate average time required for the network load to transition from low load regime (LR) to high load regime (HR), and the average time required for a tip being approved for the first time in L2HR. All analytics are verified by numerical simulations.\",\"PeriodicalId\":50389,\"journal\":{\"name\":\"IEEE Transactions on Mobile Computing\",\"volume\":\"24 11\",\"pages\":\"12441-12455\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11072322/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11072322/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Performance Analysis of Direct Acyclic Graph-Based Ledgers in Low-to-High Load Regime
Direct acyclic graph (DAG)-based ledgers and distributed consensus algorithms have been proposed for use in the Internet of Things (IoT). The DAG-based ledgers have many advantages over single-chain blockchains, such as low resource consumption, low transaction fee, high transaction throughput, and short confirmation delay. However, the scalability of the DAG consensus has not been comprehensively verified on a large scale. This paper explores the scalability of DAG consensus within the low-to-high load regime (L2HR) using the tangle model, where L2HR characterizes the transition from a phase of low network load to another phase of high network load. In particular, we determine the average number of tips in the tangle in L2HR when adopting the uniform random tip selection (URTS) and rigorously prove that using the tangle model, the average number of tips at the end of L2HR converges to a constant. We also analyze the probability that a transaction in L2HR becomes an abandoned tip, the approximate average time required for the network load to transition from low load regime (LR) to high load regime (HR), and the average time required for a tip being approved for the first time in L2HR. All analytics are verified by numerical simulations.
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.