基于增强多分量循环图注意网络的交通流预测

IF 3.3 3区 工程技术 Q2 TRANSPORTATION
Yuan Yao , Linlong Chen , Xianchen Wang , Xiaojun Wu
{"title":"基于增强多分量循环图注意网络的交通流预测","authors":"Yuan Yao ,&nbsp;Linlong Chen ,&nbsp;Xianchen Wang ,&nbsp;Xiaojun Wu","doi":"10.1080/19427867.2025.2450577","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate real-time traffic flow forecasting has been a challenge due to the complex spatial–temporal dependencies and uncertainties associated with the dynamic changes in traffic flow. To overcome this problem, a traffic flow forecasting model based on an Augmented Multi-Component Recurrent Graph Attention Network (AMR-GAT) is proposed in this paper to model the spatial–temporal correlations and periodic offset of traffic flows. This paper introduces an augmented multi-component module to address periodic temporal offset in traffic flow forecasting. It proposes an encoder-decoder architecture combining 1D convolution and LSTM via a Temporal Correlation Learner (TCL) to capture temporal characteristics, while a Graph Attention Network (GAT) handles spatial features. TCL and GAT are integrated to manage spatial-temporal correlations, and the decoder uses TCL and convolutional neural networks to generate high-dimensional representations based on spatial-temporal sequences. Experiments on two datasets demonstrate superior prediction performance of the proposed AMR-GAT model.</div></div>","PeriodicalId":48974,"journal":{"name":"Transportation Letters-The International Journal of Transportation Research","volume":"17 8","pages":"Pages 1390-1398"},"PeriodicalIF":3.3000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traffic flow forecasting based on augmented multi-component recurrent graph attention network\",\"authors\":\"Yuan Yao ,&nbsp;Linlong Chen ,&nbsp;Xianchen Wang ,&nbsp;Xiaojun Wu\",\"doi\":\"10.1080/19427867.2025.2450577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate real-time traffic flow forecasting has been a challenge due to the complex spatial–temporal dependencies and uncertainties associated with the dynamic changes in traffic flow. To overcome this problem, a traffic flow forecasting model based on an Augmented Multi-Component Recurrent Graph Attention Network (AMR-GAT) is proposed in this paper to model the spatial–temporal correlations and periodic offset of traffic flows. This paper introduces an augmented multi-component module to address periodic temporal offset in traffic flow forecasting. It proposes an encoder-decoder architecture combining 1D convolution and LSTM via a Temporal Correlation Learner (TCL) to capture temporal characteristics, while a Graph Attention Network (GAT) handles spatial features. TCL and GAT are integrated to manage spatial-temporal correlations, and the decoder uses TCL and convolutional neural networks to generate high-dimensional representations based on spatial-temporal sequences. Experiments on two datasets demonstrate superior prediction performance of the proposed AMR-GAT model.</div></div>\",\"PeriodicalId\":48974,\"journal\":{\"name\":\"Transportation Letters-The International Journal of Transportation Research\",\"volume\":\"17 8\",\"pages\":\"Pages 1390-1398\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Letters-The International Journal of Transportation Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1942786725000025\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Letters-The International Journal of Transportation Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1942786725000025","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

摘要

由于交通流的动态变化具有复杂的时空依赖性和不确定性,对交通流进行准确的实时预测一直是一个挑战。为了克服这一问题,本文提出了一种基于增强多分量循环图注意网络(AMR-GAT)的交通流预测模型,以模拟交通流的时空相关性和周期偏移。针对交通流预测中的周期性时间偏移问题,提出了一种增强型多分量模型。它提出了一种结合1D卷积和LSTM的编码器-解码器架构,通过时间相关学习器(TCL)捕获时间特征,而图注意网络(GAT)处理空间特征。该解码器集成TCL和GAT来管理时空相关性,并使用TCL和卷积神经网络生成基于时空序列的高维表示。在两个数据集上的实验表明,所提出的AMR-GAT模型具有较好的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Traffic flow forecasting based on augmented multi-component recurrent graph attention network
Accurate real-time traffic flow forecasting has been a challenge due to the complex spatial–temporal dependencies and uncertainties associated with the dynamic changes in traffic flow. To overcome this problem, a traffic flow forecasting model based on an Augmented Multi-Component Recurrent Graph Attention Network (AMR-GAT) is proposed in this paper to model the spatial–temporal correlations and periodic offset of traffic flows. This paper introduces an augmented multi-component module to address periodic temporal offset in traffic flow forecasting. It proposes an encoder-decoder architecture combining 1D convolution and LSTM via a Temporal Correlation Learner (TCL) to capture temporal characteristics, while a Graph Attention Network (GAT) handles spatial features. TCL and GAT are integrated to manage spatial-temporal correlations, and the decoder uses TCL and convolutional neural networks to generate high-dimensional representations based on spatial-temporal sequences. Experiments on two datasets demonstrate superior prediction performance of the proposed AMR-GAT model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
14.30%
发文量
79
审稿时长
>12 weeks
期刊介绍: Transportation Letters: The International Journal of Transportation Research is a quarterly journal that publishes high-quality peer-reviewed and mini-review papers as well as technical notes and book reviews on the state-of-the-art in transportation research. The focus of Transportation Letters is on analytical and empirical findings, methodological papers, and theoretical and conceptual insights across all areas of research. Review resource papers that merge descriptions of the state-of-the-art with innovative and new methodological, theoretical, and conceptual insights spanning all areas of transportation research are invited and of particular interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信