基于后验和先验变分自编码器的潜在空间表示学习和聚类分析

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Mashfiqul Huq Chowdhury , Yuichi Hirose , Stephen Marsland , Yuan Yao
{"title":"基于后验和先验变分自编码器的潜在空间表示学习和聚类分析","authors":"Mashfiqul Huq Chowdhury ,&nbsp;Yuichi Hirose ,&nbsp;Stephen Marsland ,&nbsp;Yuan Yao","doi":"10.1016/j.neucom.2025.131524","DOIUrl":null,"url":null,"abstract":"<div><div>Cluster analysis aims to identify groups of similar items within an unlabelled dataset. This is particularly challenging in high-dimensional data, necessitating the finding of hidden or latent structure within the data, for which variational methods have proven to be successful. We introduce a generative model based on the variational autoencoder (VAE) that uses a mixture distribution for both the prior and variational posterior components over the latent variables. This pair of distributions means that the algorithm can better capture the underlying structure of the data. We evaluated clustering performance on a set of benchmark datasets. Our proposed model demonstrates superior clustering performance compared with state-of-the-art deep clustering algorithms, as well as demonstrating reasonable reconstruction performance and generation of realistic examples from the latent space.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"657 ","pages":"Article 131524"},"PeriodicalIF":6.5000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixtures of posterior and prior variational autoencoders for representation learning and cluster analysis in latent space\",\"authors\":\"Mashfiqul Huq Chowdhury ,&nbsp;Yuichi Hirose ,&nbsp;Stephen Marsland ,&nbsp;Yuan Yao\",\"doi\":\"10.1016/j.neucom.2025.131524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cluster analysis aims to identify groups of similar items within an unlabelled dataset. This is particularly challenging in high-dimensional data, necessitating the finding of hidden or latent structure within the data, for which variational methods have proven to be successful. We introduce a generative model based on the variational autoencoder (VAE) that uses a mixture distribution for both the prior and variational posterior components over the latent variables. This pair of distributions means that the algorithm can better capture the underlying structure of the data. We evaluated clustering performance on a set of benchmark datasets. Our proposed model demonstrates superior clustering performance compared with state-of-the-art deep clustering algorithms, as well as demonstrating reasonable reconstruction performance and generation of realistic examples from the latent space.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"657 \",\"pages\":\"Article 131524\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225021964\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225021964","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

聚类分析的目的是在未标记的数据集中识别相似项目的组。这在高维数据中尤其具有挑战性,需要在数据中找到隐藏或潜在的结构,而变分方法已被证明是成功的。我们引入了一个基于变分自编码器(VAE)的生成模型,该模型在潜在变量上使用先验和变分后验成分的混合分布。这对分布意味着该算法可以更好地捕获数据的底层结构。我们在一组基准数据集上评估了聚类性能。与目前最先进的深度聚类算法相比,我们提出的模型具有优越的聚类性能,并且具有合理的重建性能和从潜在空间生成的真实示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mixtures of posterior and prior variational autoencoders for representation learning and cluster analysis in latent space
Cluster analysis aims to identify groups of similar items within an unlabelled dataset. This is particularly challenging in high-dimensional data, necessitating the finding of hidden or latent structure within the data, for which variational methods have proven to be successful. We introduce a generative model based on the variational autoencoder (VAE) that uses a mixture distribution for both the prior and variational posterior components over the latent variables. This pair of distributions means that the algorithm can better capture the underlying structure of the data. We evaluated clustering performance on a set of benchmark datasets. Our proposed model demonstrates superior clustering performance compared with state-of-the-art deep clustering algorithms, as well as demonstrating reasonable reconstruction performance and generation of realistic examples from the latent space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信