FGNet:通过频率引导特征增强实现自动驾驶的鲁棒车道检测

IF 6.8 1区 计算机科学 0 COMPUTER SCIENCE, INFORMATION SYSTEMS
Zilong Zhou , Xuyang Lu , Ping Liu , Haibo Huang
{"title":"FGNet:通过频率引导特征增强实现自动驾驶的鲁棒车道检测","authors":"Zilong Zhou ,&nbsp;Xuyang Lu ,&nbsp;Ping Liu ,&nbsp;Haibo Huang","doi":"10.1016/j.ins.2025.122694","DOIUrl":null,"url":null,"abstract":"<div><div>Lane detection is a critical component in autonomous driving perception systems. Complex road scenarios featuring varying lane appearances, challenging lighting conditions, and vehicle occlusions pose significant challenges for accurate lane detection. To address these problems, we propose FGNet, a robust lane detection framework that enhances feature representation through frequency-domain analysis and adaptive global-local fusion. We first introduce a Wavelet-enhanced Feature Pyramid Network (WLFPN) that leverages discrete wavelet decomposition and directional convolutions to capture high-frequency geometric features critical for lane structure modeling. Subsequently, a Global-Aware Feature Refinement (GAFR) module is designed to overcome insufficient global context integration in existing anchor-based methods, enabling adaptive feature enhancement through spatially-aware attention and selective fusion mechanisms. Finally, a Dynamic Loss Harmonizer (DLH) employs momentum-based dynamic weight adjustment to optimize multi-loss learning, improving training stability and convergence. Extensive experiments demonstrate that FGNet achieves state-of-the-art performance with F1 scores of 80.64 % and 97.89 % on the challenging CULane and TuSimple datasets, respectively, outperforming existing methods.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"724 ","pages":"Article 122694"},"PeriodicalIF":6.8000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FGNet: Robust lane detection for autonomous driving via frequency-guided feature enhancement\",\"authors\":\"Zilong Zhou ,&nbsp;Xuyang Lu ,&nbsp;Ping Liu ,&nbsp;Haibo Huang\",\"doi\":\"10.1016/j.ins.2025.122694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lane detection is a critical component in autonomous driving perception systems. Complex road scenarios featuring varying lane appearances, challenging lighting conditions, and vehicle occlusions pose significant challenges for accurate lane detection. To address these problems, we propose FGNet, a robust lane detection framework that enhances feature representation through frequency-domain analysis and adaptive global-local fusion. We first introduce a Wavelet-enhanced Feature Pyramid Network (WLFPN) that leverages discrete wavelet decomposition and directional convolutions to capture high-frequency geometric features critical for lane structure modeling. Subsequently, a Global-Aware Feature Refinement (GAFR) module is designed to overcome insufficient global context integration in existing anchor-based methods, enabling adaptive feature enhancement through spatially-aware attention and selective fusion mechanisms. Finally, a Dynamic Loss Harmonizer (DLH) employs momentum-based dynamic weight adjustment to optimize multi-loss learning, improving training stability and convergence. Extensive experiments demonstrate that FGNet achieves state-of-the-art performance with F1 scores of 80.64 % and 97.89 % on the challenging CULane and TuSimple datasets, respectively, outperforming existing methods.</div></div>\",\"PeriodicalId\":51063,\"journal\":{\"name\":\"Information Sciences\",\"volume\":\"724 \",\"pages\":\"Article 122694\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020025525008278\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025525008278","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

车道检测是自动驾驶感知系统的关键组成部分。复杂的道路场景具有不同的车道外观,具有挑战性的照明条件和车辆遮挡,这对准确的车道检测构成了重大挑战。为了解决这些问题,我们提出了FGNet,这是一个鲁棒的车道检测框架,通过频域分析和自适应全局-局部融合来增强特征表示。我们首先介绍了一个小波增强特征金字塔网络(WLFPN),它利用离散小波分解和方向卷积来捕获对车道结构建模至关重要的高频几何特征。随后,设计了全局感知特征细化(GAFR)模块,克服了现有基于锚点的方法中全局上下文集成不足的问题,通过空间感知注意和选择性融合机制实现自适应特征增强。最后,动态损失协调器(DLH)采用基于动量的动态权值调整来优化多损失学习,提高了训练的稳定性和收敛性。大量实验表明,FGNet在具有挑战性的CULane和TuSimple数据集上分别取得了80.64%和97.89%的F1分数,优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FGNet: Robust lane detection for autonomous driving via frequency-guided feature enhancement
Lane detection is a critical component in autonomous driving perception systems. Complex road scenarios featuring varying lane appearances, challenging lighting conditions, and vehicle occlusions pose significant challenges for accurate lane detection. To address these problems, we propose FGNet, a robust lane detection framework that enhances feature representation through frequency-domain analysis and adaptive global-local fusion. We first introduce a Wavelet-enhanced Feature Pyramid Network (WLFPN) that leverages discrete wavelet decomposition and directional convolutions to capture high-frequency geometric features critical for lane structure modeling. Subsequently, a Global-Aware Feature Refinement (GAFR) module is designed to overcome insufficient global context integration in existing anchor-based methods, enabling adaptive feature enhancement through spatially-aware attention and selective fusion mechanisms. Finally, a Dynamic Loss Harmonizer (DLH) employs momentum-based dynamic weight adjustment to optimize multi-loss learning, improving training stability and convergence. Extensive experiments demonstrate that FGNet achieves state-of-the-art performance with F1 scores of 80.64 % and 97.89 % on the challenging CULane and TuSimple datasets, respectively, outperforming existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Sciences
Information Sciences 工程技术-计算机:信息系统
CiteScore
14.00
自引率
17.30%
发文量
1322
审稿时长
10.4 months
期刊介绍: Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions. Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信