关于量子电路模糊推理的实现

IF 2.7 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Songsong Dai
{"title":"关于量子电路模糊推理的实现","authors":"Songsong Dai","doi":"10.1016/j.fss.2025.109611","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, quantum circuits for fuzzy relational inferences are synthesized. The compositional rule of inference (CRI) and Bandler-Kohout subproduct (BKS) methods are two widely used fuzzy relational inference (FRI) schemes. To be able to work on a quantum computer, we first modify the CRI and BKS methods. Then we construct the quantum circuits for the modified CRI and BKS methods. Finally, implementation of modified CRI method on the OriginQ quantum computing cloud platform is demonstrated.</div></div>","PeriodicalId":55130,"journal":{"name":"Fuzzy Sets and Systems","volume":"522 ","pages":"Article 109611"},"PeriodicalIF":2.7000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the quantum circuit implementation of fuzzy reasoning\",\"authors\":\"Songsong Dai\",\"doi\":\"10.1016/j.fss.2025.109611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, quantum circuits for fuzzy relational inferences are synthesized. The compositional rule of inference (CRI) and Bandler-Kohout subproduct (BKS) methods are two widely used fuzzy relational inference (FRI) schemes. To be able to work on a quantum computer, we first modify the CRI and BKS methods. Then we construct the quantum circuits for the modified CRI and BKS methods. Finally, implementation of modified CRI method on the OriginQ quantum computing cloud platform is demonstrated.</div></div>\",\"PeriodicalId\":55130,\"journal\":{\"name\":\"Fuzzy Sets and Systems\",\"volume\":\"522 \",\"pages\":\"Article 109611\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuzzy Sets and Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165011425003501\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Sets and Systems","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165011425003501","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本文合成了用于模糊关系推理的量子电路。推理组合规则(CRI)和Bandler-Kohout子积(BKS)方法是两种应用广泛的模糊关系推理(FRI)方法。为了能够在量子计算机上工作,我们首先修改了CRI和BKS方法。然后,我们构建了改进的CRI和BKS方法的量子电路。最后,演示了改进的CRI方法在OriginQ量子计算云平台上的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the quantum circuit implementation of fuzzy reasoning
In this paper, quantum circuits for fuzzy relational inferences are synthesized. The compositional rule of inference (CRI) and Bandler-Kohout subproduct (BKS) methods are two widely used fuzzy relational inference (FRI) schemes. To be able to work on a quantum computer, we first modify the CRI and BKS methods. Then we construct the quantum circuits for the modified CRI and BKS methods. Finally, implementation of modified CRI method on the OriginQ quantum computing cloud platform is demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuzzy Sets and Systems
Fuzzy Sets and Systems 数学-计算机:理论方法
CiteScore
6.50
自引率
17.90%
发文量
321
审稿时长
6.1 months
期刊介绍: Since its launching in 1978, the journal Fuzzy Sets and Systems has been devoted to the international advancement of the theory and application of fuzzy sets and systems. The theory of fuzzy sets now encompasses a well organized corpus of basic notions including (and not restricted to) aggregation operations, a generalized theory of relations, specific measures of information content, a calculus of fuzzy numbers. Fuzzy sets are also the cornerstone of a non-additive uncertainty theory, namely possibility theory, and of a versatile tool for both linguistic and numerical modeling: fuzzy rule-based systems. Numerous works now combine fuzzy concepts with other scientific disciplines as well as modern technologies. In mathematics fuzzy sets have triggered new research topics in connection with category theory, topology, algebra, analysis. Fuzzy sets are also part of a recent trend in the study of generalized measures and integrals, and are combined with statistical methods. Furthermore, fuzzy sets have strong logical underpinnings in the tradition of many-valued logics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信