黎曼流形上带反应的Leibenson型方程的整体存在性

IF 1.3 2区 数学 Q1 MATHEMATICS
Giulia Meglioli , Francescantonio Oliva , Francesco Petitta
{"title":"黎曼流形上带反应的Leibenson型方程的整体存在性","authors":"Giulia Meglioli ,&nbsp;Francescantonio Oliva ,&nbsp;Francesco Petitta","doi":"10.1016/j.na.2025.113967","DOIUrl":null,"url":null,"abstract":"<div><div>We show a global existence result for a doubly nonlinear porous medium type equation of the form <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi></mrow></msub><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><mspace></mspace><msup><mrow><mi>u</mi></mrow><mrow><mi>q</mi></mrow></msup></mrow></math></span> on a complete and non-compact Riemannian manifold <span><math><mi>M</mi></math></span> of infinite volume. Here, for <span><math><mrow><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mi>N</mi></mrow></math></span>, we assume <span><math><mrow><mi>m</mi><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>≥</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><mi>m</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>q</mi><mo>&gt;</mo><mi>m</mi><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. In particular, under the assumptions that <span><math><mi>M</mi></math></span> supports the Sobolev inequality, we prove that a solution for such a problem exists globally in time provided <span><math><mrow><mi>q</mi><mo>&gt;</mo><mi>m</mi><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mfrac><mrow><mi>p</mi></mrow><mrow><mi>N</mi></mrow></mfrac></mrow></math></span> and the initial datum is small enough; namely, we establish an explicit bound on the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span> norm of the solution at all positive times, in terms of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm of the data. Under the additional assumption that a Poincaré-type inequality also holds in <span><math><mi>M</mi></math></span>, we can establish the same result in the larger interval, i.e. <span><math><mrow><mi>q</mi><mo>&gt;</mo><mi>m</mi><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. This result has no Euclidean counterpart, as it differs entirely from the case of a bounded Euclidean domain due to the fact that <span><math><mi>M</mi></math></span> is non-compact and has infinite measure.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"263 ","pages":"Article 113967"},"PeriodicalIF":1.3000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global existence for a Leibenson type equation with reaction on Riemannian manifolds\",\"authors\":\"Giulia Meglioli ,&nbsp;Francescantonio Oliva ,&nbsp;Francesco Petitta\",\"doi\":\"10.1016/j.na.2025.113967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We show a global existence result for a doubly nonlinear porous medium type equation of the form <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi></mrow></msub><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><mspace></mspace><msup><mrow><mi>u</mi></mrow><mrow><mi>q</mi></mrow></msup></mrow></math></span> on a complete and non-compact Riemannian manifold <span><math><mi>M</mi></math></span> of infinite volume. Here, for <span><math><mrow><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mi>N</mi></mrow></math></span>, we assume <span><math><mrow><mi>m</mi><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>≥</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><mi>m</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>q</mi><mo>&gt;</mo><mi>m</mi><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. In particular, under the assumptions that <span><math><mi>M</mi></math></span> supports the Sobolev inequality, we prove that a solution for such a problem exists globally in time provided <span><math><mrow><mi>q</mi><mo>&gt;</mo><mi>m</mi><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mfrac><mrow><mi>p</mi></mrow><mrow><mi>N</mi></mrow></mfrac></mrow></math></span> and the initial datum is small enough; namely, we establish an explicit bound on the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span> norm of the solution at all positive times, in terms of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm of the data. Under the additional assumption that a Poincaré-type inequality also holds in <span><math><mi>M</mi></math></span>, we can establish the same result in the larger interval, i.e. <span><math><mrow><mi>q</mi><mo>&gt;</mo><mi>m</mi><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. This result has no Euclidean counterpart, as it differs entirely from the case of a bounded Euclidean domain due to the fact that <span><math><mi>M</mi></math></span> is non-compact and has infinite measure.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"263 \",\"pages\":\"Article 113967\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25002196\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25002196","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在无限体积的完全非紧黎曼流形M上,给出了形式为ut=Δpum+uq的双非线性多孔介质型方程的整体存在性结果。这里,对于1<;p<;N,我们假设m(p−1)≥1,m>;1和q>;m(p−1)。特别地,在M支持Sobolev不等式的假设下,我们证明了在q>; M (p−1)+pN且初始基准足够小的情况下,该问题的解在时间上全局存在;也就是说,我们根据数据的L1范数,在所有正时刻的解的L∞范数上建立一个显式的界。在附加的假设下,一个poincar型不等式在M中也成立,我们可以在更大的区间,即q>; M (p−1)中建立同样的结果。这个结果没有欧几里得对应物,因为它完全不同于有界欧几里得定义域的情况,因为M是非紧致的并且具有无限的度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global existence for a Leibenson type equation with reaction on Riemannian manifolds
We show a global existence result for a doubly nonlinear porous medium type equation of the form ut=Δpum+uq on a complete and non-compact Riemannian manifold M of infinite volume. Here, for 1<p<N, we assume m(p1)1, m>1 and q>m(p1). In particular, under the assumptions that M supports the Sobolev inequality, we prove that a solution for such a problem exists globally in time provided q>m(p1)+pN and the initial datum is small enough; namely, we establish an explicit bound on the L norm of the solution at all positive times, in terms of the L1 norm of the data. Under the additional assumption that a Poincaré-type inequality also holds in M, we can establish the same result in the larger interval, i.e. q>m(p1). This result has no Euclidean counterpart, as it differs entirely from the case of a bounded Euclidean domain due to the fact that M is non-compact and has infinite measure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信