具有分数阶转动惯量和结构阻尼或强阻尼的分数阶非自治梁方程的回拉D -吸引子

IF 1.3 Q2 MATHEMATICS, APPLIED
Penghui Lv , Jingxin Lu , Guoguang Lin
{"title":"具有分数阶转动惯量和结构阻尼或强阻尼的分数阶非自治梁方程的回拉D -吸引子","authors":"Penghui Lv ,&nbsp;Jingxin Lu ,&nbsp;Guoguang Lin","doi":"10.1016/j.rinam.2025.100640","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the well-posedness and long-time dynamics of a class of fractional non-autonomous beam equations with fractional rotational inertia and structural damping or strong damping. We prove that if <span><math><mrow><mn>1</mn><mo>≤</mo><mi>p</mi><mo>&lt;</mo><msup><mrow><mi>p</mi></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>≡</mo><mfrac><mrow><mi>N</mi><mo>+</mo><mn>4</mn><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><msup><mrow><mrow><mo>(</mo><mi>N</mi><mo>−</mo><mn>4</mn><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></mrow><mrow><mo>+</mo></mrow></msup></mrow></mfrac></mrow></math></span> <span><math><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>≤</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≤</mo><mn>1</mn><mo>)</mo></mrow></math></span>, then: (i) The initial–boundary value problem (IBVP) of the equations admits a unique solution in <span><math><msubsup><mrow><mi>X</mi></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup></math></span>; (ii) there exists a pullback <span><math><mrow><mi>D</mi><mo>−</mo></mrow></math></span>attractor for the non-autonomous dynamical system <span><math><mrow><mo>(</mo><mi>ϕ</mi><mo>,</mo><mi>θ</mi><mo>)</mo></mrow></math></span>. We provide a systematic proof of pullback <span><math><mrow><mi>D</mi><mo>−</mo></mrow></math></span>attractors and extend the existing results on non-autonomous beam models. The findings establish a theoretical foundation for future practical applications.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"28 ","pages":"Article 100640"},"PeriodicalIF":1.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pullback D−attractors for the fractional non-autonomous beam equation with fractional rotational inertia and structural damping or strong damping\",\"authors\":\"Penghui Lv ,&nbsp;Jingxin Lu ,&nbsp;Guoguang Lin\",\"doi\":\"10.1016/j.rinam.2025.100640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the well-posedness and long-time dynamics of a class of fractional non-autonomous beam equations with fractional rotational inertia and structural damping or strong damping. We prove that if <span><math><mrow><mn>1</mn><mo>≤</mo><mi>p</mi><mo>&lt;</mo><msup><mrow><mi>p</mi></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>≡</mo><mfrac><mrow><mi>N</mi><mo>+</mo><mn>4</mn><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><msup><mrow><mrow><mo>(</mo><mi>N</mi><mo>−</mo><mn>4</mn><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></mrow><mrow><mo>+</mo></mrow></msup></mrow></mfrac></mrow></math></span> <span><math><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>≤</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≤</mo><mn>1</mn><mo>)</mo></mrow></math></span>, then: (i) The initial–boundary value problem (IBVP) of the equations admits a unique solution in <span><math><msubsup><mrow><mi>X</mi></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup></math></span>; (ii) there exists a pullback <span><math><mrow><mi>D</mi><mo>−</mo></mrow></math></span>attractor for the non-autonomous dynamical system <span><math><mrow><mo>(</mo><mi>ϕ</mi><mo>,</mo><mi>θ</mi><mo>)</mo></mrow></math></span>. We provide a systematic proof of pullback <span><math><mrow><mi>D</mi><mo>−</mo></mrow></math></span>attractors and extend the existing results on non-autonomous beam models. The findings establish a theoretical foundation for future practical applications.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"28 \",\"pages\":\"Article 100640\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037425001049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425001049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类具有分数阶转动惯量和结构阻尼或强阻尼的分数阶非自治梁方程的适定性和长时间动力学问题。证明了如果1≤p<;pθ2≡N+4θ2(N−4θ2)+(12≤θ2≤1),则:(i)方程的初边值问题(IBVP)在Xθ2θ1中存在唯一解;(ii)非自治动力系统(φ,θ)存在一个回拉D -吸引子。我们提供了一个系统的回拉D -吸引子的证明,并在非自治光束模型上推广了已有的结果。研究结果为今后的实际应用奠定了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pullback D−attractors for the fractional non-autonomous beam equation with fractional rotational inertia and structural damping or strong damping
This paper investigates the well-posedness and long-time dynamics of a class of fractional non-autonomous beam equations with fractional rotational inertia and structural damping or strong damping. We prove that if 1p<pθ2N+4θ2(N4θ2)+ (12θ21), then: (i) The initial–boundary value problem (IBVP) of the equations admits a unique solution in Xθ2θ1; (ii) there exists a pullback Dattractor for the non-autonomous dynamical system (ϕ,θ). We provide a systematic proof of pullback Dattractors and extend the existing results on non-autonomous beam models. The findings establish a theoretical foundation for future practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信