{"title":"具有分数阶转动惯量和结构阻尼或强阻尼的分数阶非自治梁方程的回拉D -吸引子","authors":"Penghui Lv , Jingxin Lu , Guoguang Lin","doi":"10.1016/j.rinam.2025.100640","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the well-posedness and long-time dynamics of a class of fractional non-autonomous beam equations with fractional rotational inertia and structural damping or strong damping. We prove that if <span><math><mrow><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><msup><mrow><mi>p</mi></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>≡</mo><mfrac><mrow><mi>N</mi><mo>+</mo><mn>4</mn><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><msup><mrow><mrow><mo>(</mo><mi>N</mi><mo>−</mo><mn>4</mn><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></mrow><mrow><mo>+</mo></mrow></msup></mrow></mfrac></mrow></math></span> <span><math><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>≤</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≤</mo><mn>1</mn><mo>)</mo></mrow></math></span>, then: (i) The initial–boundary value problem (IBVP) of the equations admits a unique solution in <span><math><msubsup><mrow><mi>X</mi></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup></math></span>; (ii) there exists a pullback <span><math><mrow><mi>D</mi><mo>−</mo></mrow></math></span>attractor for the non-autonomous dynamical system <span><math><mrow><mo>(</mo><mi>ϕ</mi><mo>,</mo><mi>θ</mi><mo>)</mo></mrow></math></span>. We provide a systematic proof of pullback <span><math><mrow><mi>D</mi><mo>−</mo></mrow></math></span>attractors and extend the existing results on non-autonomous beam models. The findings establish a theoretical foundation for future practical applications.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"28 ","pages":"Article 100640"},"PeriodicalIF":1.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pullback D−attractors for the fractional non-autonomous beam equation with fractional rotational inertia and structural damping or strong damping\",\"authors\":\"Penghui Lv , Jingxin Lu , Guoguang Lin\",\"doi\":\"10.1016/j.rinam.2025.100640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the well-posedness and long-time dynamics of a class of fractional non-autonomous beam equations with fractional rotational inertia and structural damping or strong damping. We prove that if <span><math><mrow><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><msup><mrow><mi>p</mi></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>≡</mo><mfrac><mrow><mi>N</mi><mo>+</mo><mn>4</mn><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><msup><mrow><mrow><mo>(</mo><mi>N</mi><mo>−</mo><mn>4</mn><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></mrow><mrow><mo>+</mo></mrow></msup></mrow></mfrac></mrow></math></span> <span><math><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>≤</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≤</mo><mn>1</mn><mo>)</mo></mrow></math></span>, then: (i) The initial–boundary value problem (IBVP) of the equations admits a unique solution in <span><math><msubsup><mrow><mi>X</mi></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup></math></span>; (ii) there exists a pullback <span><math><mrow><mi>D</mi><mo>−</mo></mrow></math></span>attractor for the non-autonomous dynamical system <span><math><mrow><mo>(</mo><mi>ϕ</mi><mo>,</mo><mi>θ</mi><mo>)</mo></mrow></math></span>. We provide a systematic proof of pullback <span><math><mrow><mi>D</mi><mo>−</mo></mrow></math></span>attractors and extend the existing results on non-autonomous beam models. The findings establish a theoretical foundation for future practical applications.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"28 \",\"pages\":\"Article 100640\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037425001049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425001049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Pullback D−attractors for the fractional non-autonomous beam equation with fractional rotational inertia and structural damping or strong damping
This paper investigates the well-posedness and long-time dynamics of a class of fractional non-autonomous beam equations with fractional rotational inertia and structural damping or strong damping. We prove that if , then: (i) The initial–boundary value problem (IBVP) of the equations admits a unique solution in ; (ii) there exists a pullback attractor for the non-autonomous dynamical system . We provide a systematic proof of pullback attractors and extend the existing results on non-autonomous beam models. The findings establish a theoretical foundation for future practical applications.