沃尔什-阿达玛变换对Volterra积分方程数值逼近的评述

IF 1.3 Q2 MATHEMATICS, APPLIED
Farrukh Mukhamedov , Ushangi Goginava , Akaki Goginava , James Wheeldon
{"title":"沃尔什-阿达玛变换对Volterra积分方程数值逼近的评述","authors":"Farrukh Mukhamedov ,&nbsp;Ushangi Goginava ,&nbsp;Akaki Goginava ,&nbsp;James Wheeldon","doi":"10.1016/j.rinam.2025.100648","DOIUrl":null,"url":null,"abstract":"<div><div>Walsh functions form a piecewise-constant orthonormal basis that is particularly well-suited for digital computation and signal approximation. Nevertheless, the direct evaluation of Walsh transforms for discrete functions becomes computationally prohibitive as the resolution increases. To overcome this difficulty, we develop an efficient numerical scheme based on the <em>Fast Walsh–Hadamard–Fourier Transform</em> (FWHFT) for the approximation of solutions to Volterra integral equations. The proposed method reduces the computational complexity from <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> to <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>n</mi><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow><mo>,</mo></mrow></math></span> thereby rendering the approach scalable to high-resolution problems. We present a complete algorithmic framework that exploits this fast transform and analyze its performance on a variety of examples. In particular, we illustrate several examples for the broad applicability of the method. These examples highlight the principal advantages of the FWHFT approach, as well as certain limitations inherent in the transform structure. As a further application, we implement the method in a financial setting by addressing the problem of pricing European options under the Bachelier model. This example demonstrates not only the accuracy of the proposed algorithm but also its practical relevance to computational finance, especially in scenarios involving structured payoff functions. Numerical experiments confirm the expected convergence behavior and the substantial computational savings afforded by the method. Finally, we discuss possible extensions of the approach to fractional-order models, which are naturally linked to Volterra-type integral equations and arise frequently in applications.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"28 ","pages":"Article 100648"},"PeriodicalIF":1.3000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remarks on numerical approximation of Volterra integral equations by Walsh–Hadamard transform\",\"authors\":\"Farrukh Mukhamedov ,&nbsp;Ushangi Goginava ,&nbsp;Akaki Goginava ,&nbsp;James Wheeldon\",\"doi\":\"10.1016/j.rinam.2025.100648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Walsh functions form a piecewise-constant orthonormal basis that is particularly well-suited for digital computation and signal approximation. Nevertheless, the direct evaluation of Walsh transforms for discrete functions becomes computationally prohibitive as the resolution increases. To overcome this difficulty, we develop an efficient numerical scheme based on the <em>Fast Walsh–Hadamard–Fourier Transform</em> (FWHFT) for the approximation of solutions to Volterra integral equations. The proposed method reduces the computational complexity from <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> to <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>n</mi><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow><mo>,</mo></mrow></math></span> thereby rendering the approach scalable to high-resolution problems. We present a complete algorithmic framework that exploits this fast transform and analyze its performance on a variety of examples. In particular, we illustrate several examples for the broad applicability of the method. These examples highlight the principal advantages of the FWHFT approach, as well as certain limitations inherent in the transform structure. As a further application, we implement the method in a financial setting by addressing the problem of pricing European options under the Bachelier model. This example demonstrates not only the accuracy of the proposed algorithm but also its practical relevance to computational finance, especially in scenarios involving structured payoff functions. Numerical experiments confirm the expected convergence behavior and the substantial computational savings afforded by the method. Finally, we discuss possible extensions of the approach to fractional-order models, which are naturally linked to Volterra-type integral equations and arise frequently in applications.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"28 \",\"pages\":\"Article 100648\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037425001128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425001128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

沃尔什函数形成一个分段常数标准正交基,特别适合于数字计算和信号近似。然而,随着分辨率的增加,离散函数的Walsh变换的直接评估在计算上变得令人望而却步。为了克服这一困难,我们开发了一种基于快速Walsh-Hadamard-Fourier变换(FWHFT)的有效数值格式来逼近Volterra积分方程的解。该方法将计算复杂度从0 (22n)降低到O(n2n),从而使该方法可扩展到高分辨率问题。我们提出了一个完整的算法框架,利用这种快速变换,并分析了它在各种例子上的性能。特别地,我们举例说明了该方法的广泛适用性。这些例子突出了FWHFT方法的主要优点,以及转换结构中固有的某些限制。作为进一步的应用,我们通过解决巴舍利耶模型下的欧洲期权定价问题,在金融环境中实现了该方法。这个例子不仅证明了所提出算法的准确性,而且还证明了它与计算金融的实际相关性,特别是在涉及结构化支付函数的场景中。数值实验证实了该方法具有预期的收敛性和可观的计算节省。最后,我们讨论了分数阶模型的可能扩展,分数阶模型自然地与volterra型积分方程联系在一起,并且在应用中经常出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remarks on numerical approximation of Volterra integral equations by Walsh–Hadamard transform
Walsh functions form a piecewise-constant orthonormal basis that is particularly well-suited for digital computation and signal approximation. Nevertheless, the direct evaluation of Walsh transforms for discrete functions becomes computationally prohibitive as the resolution increases. To overcome this difficulty, we develop an efficient numerical scheme based on the Fast Walsh–Hadamard–Fourier Transform (FWHFT) for the approximation of solutions to Volterra integral equations. The proposed method reduces the computational complexity from O(22n) to O(n2n), thereby rendering the approach scalable to high-resolution problems. We present a complete algorithmic framework that exploits this fast transform and analyze its performance on a variety of examples. In particular, we illustrate several examples for the broad applicability of the method. These examples highlight the principal advantages of the FWHFT approach, as well as certain limitations inherent in the transform structure. As a further application, we implement the method in a financial setting by addressing the problem of pricing European options under the Bachelier model. This example demonstrates not only the accuracy of the proposed algorithm but also its practical relevance to computational finance, especially in scenarios involving structured payoff functions. Numerical experiments confirm the expected convergence behavior and the substantial computational savings afforded by the method. Finally, we discuss possible extensions of the approach to fractional-order models, which are naturally linked to Volterra-type integral equations and arise frequently in applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信