Pedro Caiua Campelo Albuquerque , Daniel Oliveira Cajueiro
{"title":"预测政治投票:一种高维机器学习方法","authors":"Pedro Caiua Campelo Albuquerque , Daniel Oliveira Cajueiro","doi":"10.1016/j.mlwa.2025.100739","DOIUrl":null,"url":null,"abstract":"<div><div>We present a novel machine learning approach to predict voting patterns in Brazil’s Chamber of Deputies. Using a high-dimensional dataset and a time-series methodology, our models aim to accurately forecast legislative decisions. Unlike prior studies that often focus on single ideological dimensions, our approach integrates a broad feature set, including party guidelines, proposition characteristics, and deputy voting history, to improve predictive power. We train time-series models for each legislature, comparing ensembles like Random Forests and Gradient Boosting, which are validated using three-fold chronological splits to ensure temporal integrity. Our analysis highlights the significant influence of party guidelines and pork-barrel politics on voting behavior. Additionally, we identify key predictors, including the theme and source of the legislative proposition, as well as the deputies’ voting history. This work demonstrates the feasibility of accurately forecasting legislative votes, offering a valuable tool for stakeholders to anticipate legislative outcomes and enhancing the transparency of the political process.</div></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"22 ","pages":"Article 100739"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting political voting: A high dimensional machine learning approach\",\"authors\":\"Pedro Caiua Campelo Albuquerque , Daniel Oliveira Cajueiro\",\"doi\":\"10.1016/j.mlwa.2025.100739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a novel machine learning approach to predict voting patterns in Brazil’s Chamber of Deputies. Using a high-dimensional dataset and a time-series methodology, our models aim to accurately forecast legislative decisions. Unlike prior studies that often focus on single ideological dimensions, our approach integrates a broad feature set, including party guidelines, proposition characteristics, and deputy voting history, to improve predictive power. We train time-series models for each legislature, comparing ensembles like Random Forests and Gradient Boosting, which are validated using three-fold chronological splits to ensure temporal integrity. Our analysis highlights the significant influence of party guidelines and pork-barrel politics on voting behavior. Additionally, we identify key predictors, including the theme and source of the legislative proposition, as well as the deputies’ voting history. This work demonstrates the feasibility of accurately forecasting legislative votes, offering a valuable tool for stakeholders to anticipate legislative outcomes and enhancing the transparency of the political process.</div></div>\",\"PeriodicalId\":74093,\"journal\":{\"name\":\"Machine learning with applications\",\"volume\":\"22 \",\"pages\":\"Article 100739\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning with applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666827025001227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827025001227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Forecasting political voting: A high dimensional machine learning approach
We present a novel machine learning approach to predict voting patterns in Brazil’s Chamber of Deputies. Using a high-dimensional dataset and a time-series methodology, our models aim to accurately forecast legislative decisions. Unlike prior studies that often focus on single ideological dimensions, our approach integrates a broad feature set, including party guidelines, proposition characteristics, and deputy voting history, to improve predictive power. We train time-series models for each legislature, comparing ensembles like Random Forests and Gradient Boosting, which are validated using three-fold chronological splits to ensure temporal integrity. Our analysis highlights the significant influence of party guidelines and pork-barrel politics on voting behavior. Additionally, we identify key predictors, including the theme and source of the legislative proposition, as well as the deputies’ voting history. This work demonstrates the feasibility of accurately forecasting legislative votes, offering a valuable tool for stakeholders to anticipate legislative outcomes and enhancing the transparency of the political process.