Boyu Kuang , Yuchi Chen , Yansong Gao , Yaqian Xu , Anmin Fu , Willy Susilo
{"title":"META:具有细粒度流和交互分析的多分类加密流量异常检测","authors":"Boyu Kuang , Yuchi Chen , Yansong Gao , Yaqian Xu , Anmin Fu , Willy Susilo","doi":"10.1016/j.comcom.2025.108333","DOIUrl":null,"url":null,"abstract":"<div><div>The pervasive implementation of encryption mechanisms has introduced considerable obstacles to anomalous traffic detection, rendering conventional attack detection methodologies that rely on packet payload characteristics ineffectual. In the absence of plaintext information, current anomaly encrypted traffic detection mainly relies on traffic data analysis to identify and characterize anomalous attack patterns in encrypted traffic, employing machine learning or deep learning models. However, the existing methods still suffer from limited detection capabilities, especially the ability to classify multi-class attacks due to insufficient internal and external features. In this paper, we propose a Multi-classified Encrypted Traffic Anomaly Detection (META) method. META refines and extends the available feature dimensions in encrypted traffic by leveraging two key aspects: the internal interaction behavior information within the traffic and the external interaction behavior information in network topology. Specifically, an in-depth examination of the internal packet interaction features is undertaken, resulting in a novel feature set, designated as META-Features, encompassing 278 fine-grained statistical features. Furthermore, a Graph Neural Network (GNN) is employed to learn the external interaction behavior in the network topology from the embedding of the IP node graph and flow edge graph. The results of the experiments demonstrate that the refined feature set META-Features significantly enhances the model’s detection capabilities. Thereby, the META-GNN model exhibits superior performance compared to the traditional approaches, with an accuracy of 91.90% and an F1-score of 87.41%.</div></div>","PeriodicalId":55224,"journal":{"name":"Computer Communications","volume":"243 ","pages":"Article 108333"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"META: Multi-classified encrypted traffic anomaly detection with fine-grained flow and interaction analysis\",\"authors\":\"Boyu Kuang , Yuchi Chen , Yansong Gao , Yaqian Xu , Anmin Fu , Willy Susilo\",\"doi\":\"10.1016/j.comcom.2025.108333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The pervasive implementation of encryption mechanisms has introduced considerable obstacles to anomalous traffic detection, rendering conventional attack detection methodologies that rely on packet payload characteristics ineffectual. In the absence of plaintext information, current anomaly encrypted traffic detection mainly relies on traffic data analysis to identify and characterize anomalous attack patterns in encrypted traffic, employing machine learning or deep learning models. However, the existing methods still suffer from limited detection capabilities, especially the ability to classify multi-class attacks due to insufficient internal and external features. In this paper, we propose a Multi-classified Encrypted Traffic Anomaly Detection (META) method. META refines and extends the available feature dimensions in encrypted traffic by leveraging two key aspects: the internal interaction behavior information within the traffic and the external interaction behavior information in network topology. Specifically, an in-depth examination of the internal packet interaction features is undertaken, resulting in a novel feature set, designated as META-Features, encompassing 278 fine-grained statistical features. Furthermore, a Graph Neural Network (GNN) is employed to learn the external interaction behavior in the network topology from the embedding of the IP node graph and flow edge graph. The results of the experiments demonstrate that the refined feature set META-Features significantly enhances the model’s detection capabilities. Thereby, the META-GNN model exhibits superior performance compared to the traditional approaches, with an accuracy of 91.90% and an F1-score of 87.41%.</div></div>\",\"PeriodicalId\":55224,\"journal\":{\"name\":\"Computer Communications\",\"volume\":\"243 \",\"pages\":\"Article 108333\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0140366425002907\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140366425002907","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
META: Multi-classified encrypted traffic anomaly detection with fine-grained flow and interaction analysis
The pervasive implementation of encryption mechanisms has introduced considerable obstacles to anomalous traffic detection, rendering conventional attack detection methodologies that rely on packet payload characteristics ineffectual. In the absence of plaintext information, current anomaly encrypted traffic detection mainly relies on traffic data analysis to identify and characterize anomalous attack patterns in encrypted traffic, employing machine learning or deep learning models. However, the existing methods still suffer from limited detection capabilities, especially the ability to classify multi-class attacks due to insufficient internal and external features. In this paper, we propose a Multi-classified Encrypted Traffic Anomaly Detection (META) method. META refines and extends the available feature dimensions in encrypted traffic by leveraging two key aspects: the internal interaction behavior information within the traffic and the external interaction behavior information in network topology. Specifically, an in-depth examination of the internal packet interaction features is undertaken, resulting in a novel feature set, designated as META-Features, encompassing 278 fine-grained statistical features. Furthermore, a Graph Neural Network (GNN) is employed to learn the external interaction behavior in the network topology from the embedding of the IP node graph and flow edge graph. The results of the experiments demonstrate that the refined feature set META-Features significantly enhances the model’s detection capabilities. Thereby, the META-GNN model exhibits superior performance compared to the traditional approaches, with an accuracy of 91.90% and an F1-score of 87.41%.
期刊介绍:
Computer and Communications networks are key infrastructures of the information society with high socio-economic value as they contribute to the correct operations of many critical services (from healthcare to finance and transportation). Internet is the core of today''s computer-communication infrastructures. This has transformed the Internet, from a robust network for data transfer between computers, to a global, content-rich, communication and information system where contents are increasingly generated by the users, and distributed according to human social relations. Next-generation network technologies, architectures and protocols are therefore required to overcome the limitations of the legacy Internet and add new capabilities and services. The future Internet should be ubiquitous, secure, resilient, and closer to human communication paradigms.
Computer Communications is a peer-reviewed international journal that publishes high-quality scientific articles (both theory and practice) and survey papers covering all aspects of future computer communication networks (on all layers, except the physical layer), with a special attention to the evolution of the Internet architecture, protocols, services, and applications.